Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác

By admin 23/10/2023 0

Giải bài tập Toán lớp 7 Bài 11: Tính chất ba đường phân giác của tam giác

A. Câu hỏi trong bài

Giải Toán 7 trang 108 Tập 2

Câu hỏi khởi động trang 108 Toán 7 Tập 2: Bạn Ngân gấp một miếng bìa hình tam giác để các nếp gấp tạo thành ba tia phân giác của các góc ở đỉnh của tam giác đó (Hình 109).

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Ba nếp gấp đó có đặc điểm gì?

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Ba nếp gấp đó lần lượt là ba đường phân giác của ba góc trong tam giác và ba nếp gấp này cùng đi qua một điểm.

Hoạt động 1 trang 108 Toán 7 Tập 2: Trong tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm D (Hình 110). Các đầu mút của đoạn thẳng AD có đặc điểm gì?

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Lời giải:

Hai đầu mút của đoạn thẳng AD có đặc điểm:

+ A là đỉnh của tam giác ABC;

+ D là giao điểm của đường phân giác của góc A và cạnh BC.

Giải Toán 7 trang 109 Tập 2

Luyện tập 1 trang 109 Toán 7 Tập 2: Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến của tam giác đó.

Lời giải:

GT

∆ABC cân tại A,

AD là đường phân giác của BAC^, 

KL

AD là đường trung tuyến của tam giác ABC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.

Vì AD là đường phân giác của BAC^ (giả thiết) nên BAD^=CAD^.

Xét ∆ABD và ∆ACD có:

AB = AC (chứng minh trên),

BAD^=CAD^ (chứng minh trên),

AD chung

Do đó ΔABD=ΔACD (c.g.c).

Suy ra BD = CD (hai cạnh tương ứng).

Mà D nằm giữa B và C nên D là trung điểm của BC

Do đó AD là đường trung tuyến kẻ từ đỉnh A của ∆ABC.

Vậy AD là đường trung tuyến của ∆ABC.

Hoạt động 2 trang 109 Toán 7 Tập 2: Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114), cho biết ba đường phân giác đó có cùng đi qua một điểm hay không.

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Lời giải:

Quan sát Hình 144 ta thấy ba đường phân giác AD, BE, CK của tam giác ABC cùng đi qua điểm I.

Giải Toán 7 trang 110 Tập 2

Luyện tập 2 trang 110 Toán 7 Tập 2: Tìm số đo x trong Hình 115.

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Lời giải:

Vì đường phân giác của góc B và góc C cắt nhau tại I nên I là giao điểm ba đường phân giác của tam giác ABC.

Do đó AI là đường phân giác của BAC^.

Suy ra BAI^=IAC^=30° (tính chất tia phân giác của một góc)

Nên x = 30°.

Vậy x = 30°.

Hoạt động 3 trang 110 Toán 7 Tập 2: Quan sát giao điểm I của ba đường phân giác trong tam giác ABC (Hình 116) và so sánh độ dài ba đoạn thẳng IM, IN, IP.

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Lời giải:

Xét ∆AIP (vuông tại P) và ∆AIN (vuông tại N) có:

PAI^=NAI^ (AI là tia phân giác của BAC^),

AI là cạnh chung,

Do đó ∆AIP = ∆AIN (cạnh huyền – góc nhọn).

Suy ra IP = IN (hai cạnh tương ứng) (1)

Xét ∆BIP (vuông tại P) và ∆BIM (vuông tại M) có:

PBI^=MBI^ (BI là tia phân giác của ABC^),

BI là cạnh chung,

Do đó ∆BIP = ∆BIM (cạnh huyền – góc nhọn).

Suy ra IP = IM (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra IP = IM = IN.

Vậy IP = IM = IN.

Giải Toán 7 trang 111 Tập 2

Luyện tập 3 trang 111 Toán 7 Tập 2: Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Lời giải:

GT

∆ABC, I là giao điểm của ba đường phân giác,

M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB

KL

IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

Do M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB (giả thiết)

Nên IM ⊥ BC, IN ⊥ AC, IP ⊥ AB.

Vì I là giao điểm của ba đường phân giác (giả thiết)

Nên IM = IN = IP (tính chất giao điểm ba đường phân giác)

+) Chứng minh IA là đường trung trực của đoạn thẳng NP.

Vì IN = IP (chứng minh trên) nên I thuộc đường trung trực của NP (1)

Xét ∆API (vuông tại P) và ∆ANI (vuông tại N) có:

AI là cạnh chung,

IP = IN (chứng minh trên)

Do đó ∆API = ∆ANI (cạnh huyền – cạnh góc vuông).

Suy ra AP = AN (hai cạnh tương ứng).

Do đó A thuộc đường trung trực của NP (2)

Từ (1) và (2) suy ra IA là đường trung trực của NP.

+) Chứng minh IB là đường trung trực của PM.

Vì IP = IM (chứng minh trên) nên I thuộc đường trung trực của PM. (3)

Xét ∆BMI (vuông tại M) và ∆BPI (vuông tại P) có:

BI là cạnh chung,

IM = IP (chứng minh trên)

Do đó ∆BMI = ∆BPI (cạnh huyền – cạnh góc vuông).

Suy ra BM = BP (hai cạnh tương ứng).

Do đó B thuộc đường trung trực của PM. (4)

Từ (3) và (4) suy ra IB là đường trung trực của PM.

+) Chứng minh IC là đường trung trực của MN.

Vì IM = IN (chứng minh trên) nên I thuộc đường trung trực của MN. (5)

Xét ∆CMI (vuông tại M) và ∆CNI (vuông tại N) có:

CI là cạnh chung,

IM = IN (chứng minh trên).

Do đó ∆CMI = ∆CNI (cạnh huyền – cạnh góc vuông).

Suy ra CM = CN (hai cạnh tương ứng).

Do đó C thuộc đường trung trực của MN. (6)

Từ (5) và (6) suy ra IC là đường trung trực của MN.

B. Bài tập

Bài 1 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.

a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?

b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?

Lời giải:

GT

∆ABC, I là giao điểm của ba đường phân giác,

M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB

KL

a) ∆IMN, ∆INP, ∆IPM có là tam giác cân không? Vì sao?

b) ∆ANP, ∆BPM, ∆CMN có là tam giác cân không? Vì sao?

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

a) Do M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB (giả thiết)

Nên IM ⊥ BC, IN ⊥ AC, IP ⊥ AB.

Vì I là giao điểm của ba đường phân giác (giả thiết)

Nên IM = IN = IP (tính chất giao điểm ba đường phân giác)

Vì IM = IN nên ∆IMN cân tại I.

Vì IN = IP nên ∆INP cân tại I.

Vì IP = IM nên ∆IPM cân tại I.

b) +) Xét ∆API (vuông tại P) và ∆ANI (vuông tại N) có:

AI là cạnh chung,

IP = IN (chứng minh trên)

Do đó ∆API = ∆ANI (cạnh huyền – cạnh góc vuông).

Suy ra AP = AN (hai cạnh tương ứng).

Tam giác ANP có AP = AN nên tam giác ANP cân tại A.

+) Xét ∆BMI (vuông tại M) và ∆BPI (vuông tại P) có:

BI là cạnh chung,

IM = IP (chứng minh trên)

Do đó ∆BMI = ∆BPI (cạnh huyền – cạnh góc vuông).

Suy ra BM = BP (hai cạnh tương ứng).

Tam giác BPM có BP = BM nên tam giác BPM cân tại B.

+) Xét ∆CMI (vuông tại M) và ∆CNI (vuông tại N) có:

CI là cạnh chung,

IM = IN (chứng minh trên).

Do đó ∆CMI = ∆CNI (cạnh huyền – cạnh góc vuông).

Suy ra CM = CN (hai cạnh tương ứng).

Tam giác CMN có CM = CN nên tam giác CMN cân tại C.

Bài 2 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:

a) IAB^+IBC^+ICA^=90°;

b) BIC^=90°+12BAC^.

Lời giải:

GT

∆ABC, I là giao điểm của ba đường phân giác

KL

a) IAB^+IBC^+ICA^=90°;

b) BIC^=90°+12BAC^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

a) Vì AI là đường phân giác của BAC^ nên IAB^=12BAC^ (tính chất tia phân giác của một góc)

Vì BI là đường phân giác của ABC^ nên IBC^=12ABC^ (tính chất tia phân giác của một góc)

Vì CI là đường phân giác của ACB^ nên ICA^=12ACB^ (tính chất tia phân giác của một góc)

Suy ra IAB^+IBC^+ICA^=12BAC^+12ABC^+12ACB^=12BAC^+ABC^+ACB^

Xét tam giác ABC ta có BAC^+ABC^+ACB^=180° (tổng ba góc của một tam giác)

Do đó IAB^+IBC^+ICA^=12.180°=90°.

Vậy IAB^+IBC^+ICA^=90°.

b) Vì CI là đường phân giác của ACB^ nên ICA^=ICB^=12ACB^.

Suy ra IAB^+IBC^+ICB^=90°.

Do đó IBC^+ICB^=90°−IAB^=90°−12BAC^.

Xét tam giác BIC có: BIC^+IBC^+ICB^=180° (tổng ba góc của một tam giác)

Do đó BIC^=180°−IBC^+ICB^=180°−90°−12BAC^=90°+12BAC^.

Vậy BIC^=90°+12BAC^.

Bài 3 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.

a) Chứng minh CBI^>ACI^;

b) So sánh IB và IC.

Lời giải:

GT

∆ABC, AB < AC,

I là giao điểm của ba đường phân giác

KL

a) CBI^>ACI^

b) So sánh IB và IC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

a) Vì BI là đường phân giác của ABC^ nên ABI^=CBI^=12ABC^.

Vì CI là đường phân giác của ACB^ nên ACI^=BCI^=12ACB^.

Tam giác ABC có AB < AC nên ACB^<ABC^ (quan hệ giữa góc và cạnh đối diện trong một tam giác)

Do đó 12ACB^<12ABC^.

Suy ra ACI^<CBI^.

Vậy CBI^>ACI^.

b) Vì ACI^<CBI^ (chứng minh câu a), mà ACI^=BCI^ nên BCI^<CBI^.

Tam giác BIC có BCI^<CBI^ nên IB < IC (quan hệ giữa cạnh và góc đối diện trong một tam giác)

Vậy IB < IC.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Giải SGK Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác

Giải SGK Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác

Giải SGK Toán 7 Bài 13: Tính chất ba đường cao của tam giác

Giải SGK Toán 7: Bài tập cuối chương 7

Tags : Tags Giải bài tập   Tính chất ba đường phân giác của tam giác   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử 12 Trừ đi một số | Chân trời sáng tạo Giáo án PPT Toán lớp 2

Next post

Bài giảng điện tử Xem đồng hồ. Tháng – năm | Giáo án PPT Toán 3

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán