Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

By admin 23/10/2023 0

Giải bài tập Toán lớp 7 Bài 13: Tính chất ba đường cao của tam giác

A. Câu hỏi trong bài

Giải Toán 7 trang 116 Tập 2

Câu hỏi khởi động trang 116 Toán 7 Tập 2: Cho tam giác ABC. Gọi M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB (Hình 132).

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Em có nhận xét gì về ba đường thẳng AM, BN, CP.

Lời giải:

Vì M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB nên AM, BN, CP lần lượt là ba đường cao tương ứng kẻ từ ba đỉnh A, B, C.

Quan sát Hình 132, ta thấy ba đường cao AM, BN, CP cùng đi qua một điểm.

Hoạt động 1 trang 116 Toán 7 Tập 2: Cho tam giác ABC (Hình 133).

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Bằng cách sử dụng ê ke, vẽ hình chiếu M của điểm A trên đường thẳng BC.

Lời giải:

Vì M là hình chiếu của điểm A trên đường thẳng BC nên AM ⊥ BC tại M.

Do đó ta dùng hai cạnh góc vuông của thước ê ke để vẽ AM ⊥ BC tại M bằng cách đặt thước như sau:

+ Một cạnh góc vuông của ê ke trùng với cạnh BC;

+ Một cạnh góc vuông còn lại của ê ke đi qua điểm A.

Khi đó ta vẽ đường thẳng theo cạnh góc vuông đó của ê ke, đường thẳng này cắt cạnh BC tại một điểm, điểm này là điểm M cần vẽ.

Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Giải Toán 7 trang 117 Tập 2

Luyện tập 1 trang 117 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Hãy đọc tên đường cao đi qua B, đường cao đi qua C.

Lời giải:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC vuông tại A nên BA ⊥ CA tại A.

Do đó:

+ Đường cao đi qua B và vuông góc với AC là AB.

+ Đường cao đi qua C và vuông góc với AB là AC.

Hoạt động 2 trang 117 Toán 7 Tập 2: Quan sát ba đường cao AM, BN, CP của tam giác ABC (Hình 137), cho biết ba đường cao đó có cùng đi qua một điểm hay không.

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Lời giải:

Quan sát Hình 132, ta thấy ba đường cao AM, BN, CP cùng đi qua điểm H.

Luyện tập 2 trang 117 Toán 7 Tập 2: Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC.

Lời giải:

GT

∆ABC đều,

G là trọng tâm của ∆ABC

KL

G là trực tâm của ∆ABC

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi M, N theo thứ tự là trung điểm của AB và AC.

Vì tam giác ABC đều (giả thiết) nên AB = BC = CA.

Mà M là trung điểm của AB nên AM = BM.

Xét ∆AMC và ∆BMC có:

AC = BC (chứng minh trên),

MC là cạnh chung,

AM = BM (chứng minh trên).

Do đó ∆AMC = ∆BMC  (c.c.c).

Suy ra AMC^=BMC^ (hai góc tương ứng).

Mà AMC^+BMC^=180° nên AMC^=BMC^=180°2=90°.

Do đó CM ⊥ AB tại M.

Do đó CM là đường cao kẻ từ đỉnh C của tam giác ABC.

Chứng minh tương tự ta cũng có BN là đường cao kẻ từ đỉnh B của tam giác ABC.

Tam giác ABC có hai đường cao BN và CM cắt nhau tại G nên G là trực tâm của tam giác ABC.

Vậy G là trực tâm của tam giác ABC.

Giải Toán 7 trang 118 Tập 2

Luyện tập 3 trang 118 Toán 7 Tập 2: Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều.

Lời giải:

GT

∆ABC,

H là trực tâm của ∆ABC,

H là trọng tâm của ∆ABC

KL

∆ABC đều.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi M, N lần lượt là trung điểm của AB và AC.

Do H là trực tâm đồng thời là trọng tâm của tam giác ABC (giả thiết) nên:

+) CM ⊥ AB tại trung điểm M của AB, do đó CM là đường trung trực của AB

Nên C nằm trên đường trung trực của AB suy ra CA = CB. (1)

+) BN ⊥ AC tại trung điểm N của AC, do đó BN là đường trung trực của AC

Nên B nằm trên đường trung trực của AC suy ra BA = BC. (2)

Từ (1) và (2) suy ra AB = BC = CA nên tam giác ABC đều.

Vậy tam giác ABC đều.

B. Bài tập

Bài 1 trang 118 Toán 7 Tập 2: Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:

a) AH và BC;

b) BH và CA;

c) CH và AB.

Lời giải:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

a) Vì H là trực tâm của tam giác ABC nên AH ⊥ BC.

b) Vì H là trực tâm của tam giác ABC nên BH ⊥ CA.

c) Vì H là trực tâm của tam giác ABC nên CH ⊥ AB.

Bài 2 trang 118 Toán 7 Tập 2: Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:

a) Tam giác ABC nhọn;

b) Tam giác ABC vuông tại A;

c) Tam giác ABC có góc A tù.

Lời giải:

a) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Trong hình vẽ trên, điểm H nằm trong tam giác ABC.

b) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC vuông tại A nên BA ⊥ CA tại A.

Do đó BA và CA là hai đường cao kẻ từ đỉnh B và đỉnh C của tam giác ABC.

Mà BA cắt CA tại A nên A là trực tâm của tam giác ABC.

Do đó điểm H trùng với điểm A.

c) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Trong hình vẽ trên, điểm H nằm ngoài tam giác ABC.

Bài 3 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc với CA thì DC vuông góc với AB.

Lời giải:

GT

∆ABC nhọn, D nằm trong tam giác,

DA ⊥ BC, DB ⊥ CA.

KL

DC ⊥ AB.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC có DA ⊥ BC, DB ⊥ CA (giả thiết)

Mà DA cắt DB tại D nên D là trực tâm của tam giác ABC.

Do đó DC ⊥ AB.

Vậy DC ⊥ AB.

Bài 4 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, HCA^=25°. Tính BAC^ và HBA^.

Lời giải:

GT

DABC nhọn, BE ⊥ AC, CF ⊥ AB,

BE và CF cắt nhau tại H, HCA^=25°

KL

Tính BAC^ và HBA^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Vì CF ⊥ AB (giả thiết) nên tam giác ACF vuông tại F.

Xét ∆ACF vuông tại F: FCA^+FAC^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Suy ra FAC^=90°−FCA^=90°−25°=65° hay BAC^=65°.

Vì BE ⊥ AC (giả thiết) nên tam giác ABE vuông tại E.

Xét ∆ABE vuông tại E: ABE^+BAE^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Suy ra ABE^=90°−BAE^=90°−65°=25° hay HBA^=25°.

Vậy BAC^=65° và HBA^=25°.

Bài 5 trang 118 Toán 7 Tập 2: Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Lời giải:

GT

AB // CD, AD // BC;

H là trực tâm tam giác ABC,

K là trực tâm tam giác ACD.

KL

AK // CH và AH // CK.

Chứng minh (Hình 139):

+) Vì K là trực tâm của tam giác ACD (giả thiết) nên AK ⊥ CD.

Mà AB // CD (giả thiết) nên AK ⊥ AB.

Vì H là trực tâm của tam giác ABC (giả thiết) nên CH ⊥ AB.

Do đó AK // CH.

+) Vì K là trực tâm của tam giác ACD (giả thiết) nên CK ⊥ AD.

Mà AD // BC (giả thiết) nên CK ⊥ BC.

Vì H là trực tâm của tam giác ABC (giả thiết) nên AH ⊥ BC.

Do đó AH // CK.

Bài 6 trang 118 Toán 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:

a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;

b) Nếu tam giác ABC có hai điểm H, I trùng nhau thì tam giác ABC là tam giác đều.

Lời giải:

a)

GT

∆ABC đều,

G là trọng tâm,

H là trực tâm,

I là giao điểm của ba đường phân giác,

O là giao điểm của ba đường trung trực.

KL

Bốn điểm G, H, I, O trùng nhau.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Kéo dài AI cắt BC tại M, kéo dài BI cắt AC tại N, kéo dài CP cắt AB tại P.

Khi đó AM là đường phân giác của BAC^ nên BAM^=CAM^;

Do tam giác ABC đều nên AB = BC = CA.

Xét ∆ABM và ∆ACM có:

AB = AC (chứng minh trên),

BAM^=CAM^ (chứng minh trên),

AM là cạnh chung

Do đó ∆ABM = ∆ACM  (c.g.c).

Suy ra:

• AMB^=AMC^ (hai góc tương ứng);

• BM = CM (hai cạnh tương ứng).

Vì BM = CM nên M là trung điểm của BC.

Ta có AMB^=AMC^, mà AMB^+AMC^=180° nên AMB^=AMC^=180°2=90°.

Khi đó AM ⊥ BC tại trung điểm M của BC nên AM là đường trung trực của đoạn thẳng BC cũng đồng thời là đường cao và đường trung tuyến kẻ từ A của ∆ABC.

Chứng minh tương tự ta cũng có:

+) BN là đường trung trực của đoạn thẳng AC, đồng thời là đường cao và đường trung tuyến kẻ từ B của ∆ABC.

+) CP là đường trung trực của đoạn thẳng AB, đồng thời là đường cao và đường trung tuyến kẻ từ C của ∆ABC.

Mà AM, BN, CP cắt nhau tại I nên G, H, I, O trùng nhau.

b)

GT

∆ABC,

H là trực tâm,

I là giao điểm của ba đường phân giác,

I ≡ H

KL

∆ABC đều

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Vì I là giao điểm ba đường phân giác, H là trực tâm của tam giác ABC (giả thiết) nên:

+ AI là đường phân giác và AH là đường cao kẻ từ A của ∆ABC.

Mà I ≡ H (giả thiết) nên đường phân giác AI trùng với đường cao AH.

+ Tương tự đường phân giác BI trùng đường cao BH;

+ Đường phân giác CI trùng đường cao CH.

Gọi M, N, P lần lượt là chân đường cao (hay cũng chính là đường phân giác) kẻ từ A, B, C đến BC, CA, AB.

Xét ∆ABM (vuông tại M) và ∆ACM (vuông tại M) có:

BAM^=CAM^ (do AM là tia phân giác của BAC^),

AM là cạnh chung

Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề).

Suy ra AB = AC (hai cạnh tương ứng). (1)

Xét ∆ABN (vuông tại N) và ∆CBN (vuông tại N) có:

BN là cạnh chung,

ABN^=CBN^ (do BN là tia phân giác của ABC^),

Do đó ∆ABN = ∆CBN (cạnh góc vuông – góc nhọn kề).

Suy ra AB = BC (hai cạnh tương ứng). (2)

Từ (1) và (2) suy ra AB = BC = CA do đó tam giác ABC là tam giác đều.

Vậy tam giác ABC đều.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Giải SGK Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác

Giải SGK Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác

Giải SGK Toán 7 Bài 13: Tính chất ba đường cao của tam giác

Giải SGK Toán 7: Bài tập cuối chương 7

Tags : Tags Giải bài tập   tính chất ba đường cao của tam giác   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử Em giải bài toán | Chân trời sáng tạo Giáo án PPT Toán lớp 2

Next post

Giải SGK Toán lớp 3 trang 86, 87 Bài 68: Tiền Việt Nam | Kết nối tri thức

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán