Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân

By admin 23/10/2023 0

Giải bài tập Toán lớp 7 Bài 7: Tam giác cân

A. Câu hỏi trong bài

Giải Toán 7 trang 93 Tập 2

Câu hỏi khởi động trang 93 Toán 7 Tập 2: Cầu Long Biên bắc qua sông Hồng ở Thủ đô Hà Nội gợi nên hình ảnh tam giác ABC có sự đối xứng và cân bằng.

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Tam giác ABC như vậy gọi là tam giác gì?

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Tam giác ABC mô tả cầu Long Biên ở hình vẽ trên là tam giác cân.

Hoạt động 1 trang 93 Toán 7 Tập 2: Trong Hình 68, hai cạnh AB và AC của tam giác ABC có bằng nhau hay không?

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Lời giải:

Ta coi độ dài cạnh ô vuông nhỏ là 1 đơn vị.

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Khi đó cạnh AB là đường chéo của hình chữ nhật có chiều dài bằng 4 đơn vị và chiều rộng bằng 2 đơn vị.

Ta cũng có cạnh AC là đường chéo của hình chữ nhật có chiều dài bằng 4 đơn vị và chiều rộng bằng 2 đơn vị.

Do đó AB = AC.

Vậy hai cạnh AB và AC của tam giác ABC có bằng nhau.

Giải Toán 7 trang 94 Tập 2

Hoạt động 2 trang 94 Toán 7 Tập 2: Cho tam giác ABC cân tại A, tia phân giác của góc A cắt cạnh BC tại D (Hình 72).

a) Hai tam giác ABD và ACD có bằng nhau hay không? Vì sao?

b) Hai góc B và C có bằng nhau hay không? Vì sao?

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Lời giải:

Tam giác ABC cân tại A nên AB = AC.

Vì AD là tia phân giác của góc A nên BAD^=CAD^=12A^. 

a) Xét tam giác ABD và tam giác ACD có:

AB = AC (chứng minh trên)

BAD^=CAD^ (chưng minh trên)

Cạnh AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.g.c)

Vậy ∆ABD = ∆ACD.

b) Vì ∆ABD = ∆ACD (chứng minh câu a)

Suy ra B^=C^ (hai góc tương ứng)

Vậy B^=C^

Hoạt động 3 trang 94 Toán 7 Tập 2: Cho tam giác ABC thoả mãn B^=C^. Kẻ AH vuông góc với BC, H thuộc BC (Hình 74).

a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?

b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Lời giải:

a) Vì AH ⊥ BC (H ∈ BC) nên AHB^=AHC^=90°

Do đó tam giác ABH vuông tại H, tam giác ACH vuông tại H

Xét tam giác ABH vuông tại H có: BAH^+B^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Tam giác ACH vuông tại H có: CAH^+C^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Mà B^=C^ (giả thiết)

Do đó BAH^=CAH^

Xét tam giác ABH (vuông tại H) và tam giác ACH (vuông tại H) có:

AH là cạnh chung

BAH^=CAH^

Do đó ∆ABH = ∆ACH (cạnh góc vuông – góc nhọn kề)

Vậy ∆ABH = ∆DACH.

b) Vì ∆ABH = ∆ACH (chứng minh câu a)

Suy ra AB = AC (hai cạnh tương ứng)

Vậy AB = AC.

Giải Toán 7 trang 95 Tập 2

Luyện tập trang 95 Toán 7 Tập 2: Cho tam giác ABC cân tại A. Qua điểm M nằm giữa A và B kẻ đường thẳng song song với BC, cắt cạnh AC tại N. Chứng minh tam giác AMN cân.

Lời giải:

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Tam giác ABC cân tại A (giả thiết) nên B^=C^ 

Vì MN // BC nên M^=B^ và N^=C^ (các cặp góc đồng vị)

Mà tam giác ABC cân tại A (giả thiết) nên B^=C^ 

Suy ra M^=N^ 

Do đó tam giác AMN cân tại A.

Vậy tam giác AMN cân tại A.

Hoạt động 4 trang 95, trang 96 Toán 7 Tập 2: Dùng thước thẳng (có chia đơn vị) và compa vẽ tam giác cân ABC có cạnh đáy BC = 4 cm, cạnh bên AB = AC = 3 cm.

Để vẽ tam giác ABC, ta làm như sau:

Bước 1. Vẽ đoạn thẳng BC = 4 cm

Bước 2. Vẽ một phần đường tròn tâm B bán kính 3 cm và một phần đường tròn tâm C bán kính 3 cm, chúng cắt nhau tại điểm A.

Bước 3. Vẽ các đoạn thẳng AB, AC. Ta nhận được tam giác ABC.

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

B. Bài tập

Giải Toán 7 trang 96 Tập 2

Bài 1 trang 96 Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của cạnh AC và N là trung điểm của cạnh AB. Chứng minh BM = CN.

Lời giải:

GT

∆ABC cân tại A

M, N lần lượt là trung điểm cạnh AC, AB

KL

BM = CN.

Chứng minh (Hình vẽ dưới đây)

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Tam giác ABC cân tại A (giả thiết) nên B^=C^ và  AB = AC (1)

Mà M là trung điểm cạnh AC (giả thiết) nên AM = MC =12AC (2)

N là trung điểm cạnh AB (giả thiết) nên AN = NB =12AB (3)

Từ (1), (2) và (3) suy ra AM = MC = AN = NB

 Xét tam giác BNC và tam giác CMB có:

BN = CM (chứng minh trên)

B^=C^(chứng minh trên)

BC là cạnh chung

Do đó ∆BNC = ∆CMB (c.g.c)

Suy ra CN = BM (hai cạnh tương ứng)

Vậy BM = CN.

Bài 2 trang 96 Toán 7 Tập 2: Cho tam giác ABC có A^=120°. Tia phân giác của góc A cắt cạnh BC tại D. Đường thẳng qua D song song với AB cắt cạnh AC tại E. Chứng minh rằng tam giác ADE đều.

Lời giải:

GT

∆ABC, A^=120°

AD là tia phân giác góc A

DE // AB

KL

∆ADE đều.

Chứng minh (Hình vẽ dưới đây)

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Vì AD là tia phân giác góc A (giả thiết)

Nên BAD^=CAD^=12BAC^ (tính chất tia phân giác của một góc)

Mà BAC^=120° nên BAD^=CAD^=12BAC^=12.120°=60° 

Lại có DE // AB (giả thiết) nên ADE^=BAD^=60° (hai góc so le trong)

Do đó tam giác ADE có DAE^=ADE^=60° 

Suy ra tam giác ADE là tam giác cân có một góc bằng 60°.

Suy ra tam giác ADE là tam giác đều.

Vậy tam giác ADE là tam giác đều.

Bài 3 trang 96 Toán 7 Tập 2: Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.

Lời giải:

GT

∆ABC vuông cân tại A

M là trung điểm của cạnh huyền BC

KL

∆MAB vuông cân.

Chứng minh (Hình vẽ dưới đây)

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

+) Tam giác ABC là tam giác vuông cân tại A (giả thiết) nên AB = AC và A^=90°, B^=C^=45° 

Xét tam giác ABM và tam giác ACM có:

AM là cạnh chung

MB = MC (M là trung điểm của BC)

AB = AC (chứng minh trên)

Do đó ∆ABM = ∆ACM (c.c.c)

Suy ra BAM^=CAM^ (hai góc tương ứng)

Nên tia AM là tia phân giác của góc A

Do đó BAM^=CAM^=12.A^=12.90°=45°

+) Xét tam giác MAB có B^=45°,BAM^=45° 

Do đó tam giác MAB cân tại M. (1)

Lại có BMA^=CMA^ (hai góc tương ứng của ∆ABM = ∆ACM)

Mà BMA^+CMA^=180°(tính chất hai góc kề bù)

Do đó BMA^=CMA^=12.180°=90°

Nên tam giác MAB vuông tại M. (2)

Từ (1) và (2) suy ra tam giác MAB vuông cân tại M.

Bài 4 trang 96 Toán 7 Tập 2: Trong Hình 76, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

a) AD // BE và BD // CE;

b) ABE^=DBC^=120°; 

c) AE = CD.

Lời giải:

GT

∆ABD đều, ∆BCE đều

A, B, C thẳng hàng

KL

a) AD // BE và BD // CE;

b) ABE^=DBC^=120°; 

c) AE = CD.

Chứng minh (Hình 76):

a) Vì tam giác ABD đều (giả thiết)

Nên AB = BD = AD và DAB^=DBA^=ADB^=60° 

Tam giác BCE đều (giả thiết)

Nên BC = CE = BE và ECB^=EBC^=CEB^=60° 

Vì DAB^=EBC^=60° mà hai góc này ở vị trí đồng vị

Nên AD // BE (dấu hiệu nhận biết hai đường thẳng song song)

Vì DBA^=ECB^=60° mà hai góc này ở vị trí đồng vị

Nên BD // CE (dấu hiệu nhận biết hai đường thẳng song song)

Vậy AD // BE và BD // CE.

b) Vì ABE^ và EBC^ là hai góc kề bù nên ABE^+EBC^=180° (tính chất hai góc kề bù)

Suy ra ABE^=180°−EBC^=180°−60°=120°

Tương tự ta cũng có DBA^+DBC^=180° (tính chất hai góc kề bù)

Nên DBC^=180°−DBA^=180°−60°=120°

Vậy ABE^=DBC^=120°.

c) Xét tam giác ABE và tam giác DBC có:

AB = DB (chứng minh trên)

ABE^=DBC^=120° (chứng minh trên)

BE = BC (chứng minh trên)

Do đó ∆ABE = ∆DBC (c.g.c)

Suy ra AE = CD (hai cạnh tương ứng)

Vậy AE = CD.

Bài 5 trang 96 Toán 7 Tập 2: Trong thiết kế của một ngôi nhà, độ nghiêng của mái nhà so với phương nằm ngang phải phù hợp với kết cấu của ngôi nhà và vật liệu làm mái nhà. Hình 77 mô tả mặt cắt đứng của ngôi nhà, trong đó độ nghiêng của mái nhà so với phương nằm ngang được biểu diễn bởi số đo góc ở đáy của tam giác ABC cân tại A.

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Tính độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong mỗi trường hợp sau:

a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói;

b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng;

c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn.

Lời giải:

Tam giác ABC cân tại A nên B^=C^ 

Xét tam giác ABC có A^+B^+C^=180° (tổng ba góc trong một tam giác)

Suy ra A^+B^+B^=180° 

Hay 2B^=180°−A^ 

Do đó B^=C^=180°−A^2

a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói nên A^=120° 

Do đó B^=C^=180°−120°2=30°

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 30°.

b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng nên A^=140° 

Do đó B^=C^=180°−140°2=20°

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 20°.

c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn nên A^=148°

Do đó B^=C^=180°−148°2=16°

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong trường hợp này là 16°.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Giải SGK Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Giải SGK Toán 7 Bài 7: Tam giác cân

Giải SGK Toán 7 Bài 8: Đường vuông góc và đường xiên

Giải SGK Toán 7 Bài 9: Đường trung trực của một đoạn thẳng

Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Tags : Tags Giải bài tập   tam giác cân   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử 7 cộng với một số, 6 cộng với một số | Chân trời sáng tạo Giáo án PPT Toán lớp 2

Next post

Giáo án Toán lớp 3 Bài 61 (Kết nối tri thức 2023): Làm tròn các số đến hàng nghìn, hàng chục nghìn

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán