Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Lý thuyết Góc ở vị trí đặc biệt (Cánh diều 2023) hay, chi tiết | Toán lớp 7

By admin 23/10/2023 0

Lý thuyết Toán lớp 7 Bài 1: Góc ở vị trí đặc biệt

A. Lý thuyết Góc ở vị trí đặc biệt

1. Hai góc kề nhau

Hai góc kề nhau là hai góc có đỉnh chung, có một cạnh chung và hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó.

Ví dụ:

Hai góc yOz và yOt trong hình vẽ có chung đỉnh O, có một cạnh chung là Oy, hai cạnh còn lại là Oz và Ot nằm về hai phía của đường thẳng xy.

Vì vậy hai góc yOz và yOt là hai góc kề nhau.

Tính chất:

– Cho góc xOz (khác góc bẹt) và tia Oy nằm trong góc đó. Khi đó hai góc xOy và yOz là hai góc kề nhau và xOz^=xOy^+yOz^.

– Nếu góc xOz là góc bẹt thì với mỗi tia Oy (khác hai tia Ox, Oz), ta cũng có: xOz^=xOy^+yOz^.

Ví dụ: Trong hình hai góc xOy và yOz có phải là hai góc kề nhau không? Tính số đo góc xOz ?

Hướng dẫn giải

Tia Oy nằm trong góc xOz nên góc xOy và góc yOz là hai góc kề nhau.

Và xOz^=xOy^+yOz^=45°+30°=75°.

Vậy hai góc xOy và yOz là hai góc kề nhau và xOz^=75°.

2. Hai góc bù nhau. Hai góc kề bù

– Hai góc bù nhau là hai góc có tổng bằng 180°.

– Hai góc vừa kề nhau, vừa bù nhau gọi là hai góc kề bù.

Chú ý: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau là hai góc kề bù.

Ví dụ:

a)

Ta có : zAt^+xOy^=60°+120°=180°.

Vì hai góc zAt và xOy có tổng bằng 180° nên góc zAt và xOy là hai góc bù nhau.

b)

– Hai góc xOz và góc xOy có đỉnh O chung và cạnh Ox chung ; Hai cạnh Oy và Oz nằm về hai phía của đường thẳng chứa tia Ox. Vì thế, hai góc xOz và góc xOy kề nhau.

– Ta có : xOz^+xOy^=60°+120°=180°, vậy nên hai góc xOz và xOy là hai góc bù nhau.

Hai góc xOz và xOy là hai góc vừa kề nhau vừa bù nhau.

Vậy, góc xOz và góc xOy là hai góc kề bù.

3. Hai góc đối đỉnh

– Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

– Hai góc đối đỉnh thì bằng nhau.

Ví dụ :

Cạnh Ot của góc tOz là tia đối của cạnh Ox của góc xOy;

Cạnh Oz của góc tOz là tia đối của cạnh Oy của góc xOy;

Vì vậy, góc xOy và góc tOz là hai góc đối đỉnh, nên xOy^=tOz^.

Tương tự, góc xOz và góc tOy cũng là hai góc đối đỉnh, nên xOz^=tOy^.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Biết góc xOz và xOt là hai góc kề bù. Hãy tính góc xOt.

Hướng dẫn giải

Vì góc xOz và góc xOt là hai góc kề bù nên xOz^+xOt^=180°.

Suy ra 75°+xOt^=180° suy ra xOt^=180°−75°=105°.

Vậy xOt^=105°.

Bài 2. Tìm x trong hình vẽ

Hướng dẫn giải

Góc aOc và góc cOb kề bù, mà cOb^=90° (góc vuông).

Nên aOc^=180°−cOb^=180°−90°=90°.

Ta có góc aOm và góc mOc là hai góc kề nhau.

Nên aOc^=aOm^+mOc^, mà aOc^=90° 

Suy ra: mOc^=aOc^−aOm^=90°−30°=60°.

Vì góc mOc và góc nOd đối đỉnh nên ta có x=nOd^=mOc^=60°.

Vậy x=60°.

B.2 Bài tập trắc nghiệm

Câu 1. Hai góc đối đỉnh thì:

A. bằng nhau;                                                                

B. có tổng bằng 180°;                                                    

C. kề nhau;                                                                    

D. có hiệu bằng 180°.

Hướng dẫn giải

Đáp án đúng là: A

Hai góc đối đỉnh thì bằng nhau.

Câu 2. Tìm số đo x và y trong hình vẽ dưới đây:

A. x = 38° và y = 52°;

B. x = 38° và y = 142°;                                                  

C. x = 142° và y = 38°;                                                  

D. x = 52° và y = 38°.

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

+ Góc aOb và góc b’Oa’ là hai góc đối đỉnh nên x=aOb^=b‘Oa‘^=38°.

+ Góc aOb’ và góc b’Oa’ là hai góc kề bù nên

aOb‘^+b‘Oa‘^=180°⇒aOb‘^=180°−b‘Oa‘^=180°−38°=142°.

Hay y = 142°

Vậy x = 38° và y = 142°.

Câu 3. Trong các hình dưới đây hình nào vẽ hai góc kề nhau là không đúng.


A. Hình A;                                                                     

B. Hình B;                                                                     

C. Hình C;                                                                     

D. Hình D.

Hướng dẫn giải

Đáp án đúng là: B

Hai góc kề nhau là có đỉnh chung, có một cạnh chung và hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó.

Đáp án B không đúng vì hai góc không có đỉnh chung và cạnh chung.

Suy ra chọn đáp án B.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 7 Cánh diều hay, chi tiết khác:

Lý thuyết Toán 7 Chương 3: Hình học trực quan

Lý thuyết Bài 1: Góc ở vị trí đặc biệt

Lý thuyết Bài 2: Tia phân giác của một góc

Lý thuyết Bài 3: Hai đường thẳng song song

Lý thuyết Bài 4: Định lý

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán lớp 2 Tập 2 trang 66, 67, 68, 69, 70 Bài 55: Đề-xi-mét, mét, ki-lô-mét | Kết nối tri thức

Next post

Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán