Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 17/10/2023 0

Lý thuyết Toán lớp 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

1. Sự đồng quy của ba đường trung trực trong một tam giác

a) Đường trung trực của tam giác

Trong tam giác ABC, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác. Ở hình dưới đây, a là đường trung trực ứng với cạnh BC của tam giác ABC.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 1)

b) Sự đồng quy của ba đường trung trực

Định lí 1: Ba đường trung trực của một tam giác đồng quy tại một điểm. Điểm này cách đều ba đỉnh của tam giác.

Ví dụ: Trong tam giác ABC có các đường trung trực a, b, c đồng quy tại điểm O.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 2)

Khi đó: OA = OB = OC.

Nhận xét: Vì giao điểm O của ba đường trung trực trong tam giác ABC cách đều ba đỉnh của tam giác đó (OA = OB = OC) nên có một đường tròn tâm O đi qua ba đỉnh A, B, C.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 3)

2. Sự đồng quy của ba đường cao trong tam giác

a) Đường cao của tam giác

Trong hình dưới đây, đoạn thẳng AH kẻ từ đỉnh A, vuông góc với cạnh đối diện BC là một đường cao của tam giác ABC. Ta còn nói AH là đường cao xuất phát từ đỉnh A (hay đường cao ứng với cạnh BC).

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 4)

b) Sự đồng quy của ba đường cao

Định lí 2: Ba đường cao của một tam giác đồng quy tại một điểm.

Ví dụ: Trong tam giác ABC có các đường cao AI, BJ, CK đồng quy tại điểm H.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 5)

Chú ý:

– Điểm đồng quy của ba đường cao của một tam giác gọi là trực tâm của tam giác đó.

Ví dụ:Cho tam giác ABC có các đường cao AI, BJ, CK đồng quy tại điểm H.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 6)

Khi đó, H được gọi là trực tâm của tam giác ABC.

– Gọi H là trực tâm của tam giác ABC, ta có:

+) Khi ABC là tam giác nhọn thì H nằm bên trong tam giác.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 7)

+) Khi ABC là tam giác vuông thì H trùng với A (kí hiệu H ≡ A).

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 8)

+) Khi ABC là tam giác tù thì H nằm bên ngoài tam giác.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 9)

Bài tập Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Bài 1: Cho tam giác ABC vuông. Kẻ đường thẳng vuông góc với cạnh huyền BC của tam giác ABC tại điểm D không thuộc đoạn BC. Nó cắt đường thẳng chứa cạnh AB tại E và cắt đường thẳng chứa cạnh AC tại F. Xác định trực tâm của tam giác BEF.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 10)

Trong tam giác BEF, đường cao xuất phát từ B là đường thẳng BD, đường cao xuất phát từ F là đường thẳng FA.

Hai đường cao BD và FA cắt nhau tại C.

Vậy suy ra C là trực tâm của tam giác BEF.

Bài 2: Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM, gọi N là điểm sao cho Oy là đường trung trực của đoạn thẳng PN. Đường thẳng MN cắt Ox tại R, cắt Oy tại S. Chứng minh tia PO là tia phân giác của góc RPS.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 11)

Tam giác OPM là tam giác cân tại O (Vì Ox là đường trung trực của đoạn thẳng PM)

Suy ra OPM^=OMP^ (1) và OM = OP.

Lại có tam giác RPM là tam giác cân tại R (Vì Ox, hay chính là Rx là đường trung trực của đoạn thẳng PM).

Suy ra RPM^=RMP^ (2)

Trừ vế với vế của (1) cho (2) ta có:

OPM^−RPM^=OMP^−RMP^

Hay OPR^=OMR^(*)

Tương tự ta có tam giác OPN là tam giác cân tại O (Vì Oy là đường trung trực của đoạn thẳng PN)

Suy ra OPN^=ONP^ (3) và ON = OP.

Lại có tam giác SPN là tam giác cân tại R (Vì Oy, hay chính là Sy là đường trung trực của đoạn thẳng PN).

Suy ra SPN^=SNP^ (4)

Trừ vế với vế của (3) cho (4) ta có:

OPN^−SPN^=ONP^−SNP^.

Hay OPS^=ONS^(**)

Vì OM = ON (= OP) nên tam giác OMN là tam giác cân tại O.

Do đó: OMR^=ONS^(***)

Từ (*), (**), (***) ta suy ra được OPR^=OPS^.

Vậy suy ra PO là tia phân giác của góc RPS (đpcm).

Bài 3: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh BAC^=45°.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 12)

Gọi BJ là đường cao xuất phát từ B của tam giác ABC.

Xét hai tam giác AHJ và tam giác BCJ có:

AH = BC (gt)

AJH^=BJC^=90°

JAH^=JBC^ (cùng phụ với JBC^)

Do đó ∆AHJ = ∆BCJ (cạnh huyền – góc nhọn)

Suy ra AJ = BJ (hai cạnh tương ứng)

Xét tam giác JAB vuông tại J và có AJ = BJ (cmt)

Nên JAB là tam giác vuông cân tại J.

Vậy BAJ^=BAC^=45°(đpcm).

Xem thêm các bài tóm tắt lý thuyết Toán 7 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác

Lý thuyết Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Lý thuyết Chương 9: Quan hệ giữa các yếu tố trong một tam giác

Lý thuyết Bài 36: Hình hộp chữ nhật và hình lập phương

Lý thuyết Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác

Lý thuyết Chương 10: Một số hình khối trong thực tiễn

Tags : Tags Lý thuyết Toán 7   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Chuyên đề hàm số bậc nhất và hàm số bậc 2 – Đại số 10

Next post

Lý thuyết Toán lớp 8 Bài 5: Những hằng đẳng thức đáng nhớ (tiếp theo)

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán