Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 7 – Kết nối

Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 19/04/2023 0

Lý thuyết Toán lớp 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

1. Sự đồng quy của ba đường trung trực trong một tam giác

a) Đường trung trực của tam giác

Trong tam giác ABC, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác. Ở hình dưới đây, a là đường trung trực ứng với cạnh BC của tam giác ABC.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 1)

b) Sự đồng quy của ba đường trung trực

Định lí 1: Ba đường trung trực của một tam giác đồng quy tại một điểm. Điểm này cách đều ba đỉnh của tam giác.

Ví dụ: Trong tam giác ABC có các đường trung trực a, b, c đồng quy tại điểm O.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 2)

Khi đó: OA = OB = OC.

Nhận xét: Vì giao điểm O của ba đường trung trực trong tam giác ABC cách đều ba đỉnh của tam giác đó (OA = OB = OC) nên có một đường tròn tâm O đi qua ba đỉnh A, B, C.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 3)

2. Sự đồng quy của ba đường cao trong tam giác

a) Đường cao của tam giác

Trong hình dưới đây, đoạn thẳng AH kẻ từ đỉnh A, vuông góc với cạnh đối diện BC là một đường cao của tam giác ABC. Ta còn nói AH là đường cao xuất phát từ đỉnh A (hay đường cao ứng với cạnh BC).

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 4)

b) Sự đồng quy của ba đường cao

Định lí 2: Ba đường cao của một tam giác đồng quy tại một điểm.

Ví dụ: Trong tam giác ABC có các đường cao AI, BJ, CK đồng quy tại điểm H.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 5)

Chú ý:

– Điểm đồng quy của ba đường cao của một tam giác gọi là trực tâm của tam giác đó.

Ví dụ:Cho tam giác ABC có các đường cao AI, BJ, CK đồng quy tại điểm H.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 6)

Khi đó, H được gọi là trực tâm của tam giác ABC.

– Gọi H là trực tâm của tam giác ABC, ta có:

+) Khi ABC là tam giác nhọn thì H nằm bên trong tam giác.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 7)

+) Khi ABC là tam giác vuông thì H trùng với A (kí hiệu H ≡ A).

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 8)

+) Khi ABC là tam giác tù thì H nằm bên ngoài tam giác.

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 9)

Bài tập Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

Bài 1: Cho tam giác ABC vuông. Kẻ đường thẳng vuông góc với cạnh huyền BC của tam giác ABC tại điểm D không thuộc đoạn BC. Nó cắt đường thẳng chứa cạnh AB tại E và cắt đường thẳng chứa cạnh AC tại F. Xác định trực tâm của tam giác BEF.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 10)

Trong tam giác BEF, đường cao xuất phát từ B là đường thẳng BD, đường cao xuất phát từ F là đường thẳng FA.

Hai đường cao BD và FA cắt nhau tại C.

Vậy suy ra C là trực tâm của tam giác BEF.

Bài 2: Cho P là một điểm nằm trong góc nhọn xOy. Gọi M là điểm sao cho Ox là đường trung trực của đoạn thẳng PM, gọi N là điểm sao cho Oy là đường trung trực của đoạn thẳng PN. Đường thẳng MN cắt Ox tại R, cắt Oy tại S. Chứng minh tia PO là tia phân giác của góc RPS.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 11)

Tam giác OPM là tam giác cân tại O (Vì Ox là đường trung trực của đoạn thẳng PM)

Suy ra OPM^=OMP^ (1) và OM = OP.

Lại có tam giác RPM là tam giác cân tại R (Vì Ox, hay chính là Rx là đường trung trực của đoạn thẳng PM).

Suy ra RPM^=RMP^ (2)

Trừ vế với vế của (1) cho (2) ta có:

OPM^−RPM^=OMP^−RMP^

Hay OPR^=OMR^(*)

Tương tự ta có tam giác OPN là tam giác cân tại O (Vì Oy là đường trung trực của đoạn thẳng PN)

Suy ra OPN^=ONP^ (3) và ON = OP.

Lại có tam giác SPN là tam giác cân tại R (Vì Oy, hay chính là Sy là đường trung trực của đoạn thẳng PN).

Suy ra SPN^=SNP^ (4)

Trừ vế với vế của (3) cho (4) ta có:

OPN^−SPN^=ONP^−SNP^.

Hay OPS^=ONS^(**)

Vì OM = ON (= OP) nên tam giác OMN là tam giác cân tại O.

Do đó: OMR^=ONS^(***)

Từ (*), (**), (***) ta suy ra được OPR^=OPS^.

Vậy suy ra PO là tia phân giác của góc RPS (đpcm).

Bài 3: Gọi H là trực tâm của tam giác nhọn ABC. Khi AH = BC, hãy chứng minh BAC^=45°.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (ảnh 12)

Gọi BJ là đường cao xuất phát từ B của tam giác ABC.

Xét hai tam giác AHJ và tam giác BCJ có:

AH = BC (gt)

AJH^=BJC^=90°

JAH^=JBC^ (cùng phụ với JBC^)

Do đó ∆AHJ = ∆BCJ (cạnh huyền – góc nhọn)

Suy ra AJ = BJ (hai cạnh tương ứng)

Xét tam giác JAB vuông tại J và có AJ = BJ (cmt)

Nên JAB là tam giác vuông cân tại J.

Vậy BAJ^=BAC^=45°(đpcm).

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải các phương trình sinx2 + 10o  = -12

Next post

Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác

Bài liên quan:

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết

Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  2. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  4. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  5. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  6. Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  7. Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  8. Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  9. Lý thuyết Toán 7 Chương 2 (Kết nối tri thức 2023): Số thực hay, chi tiết
  10. Lý thuyết Góc ở vị trí đặc biệt. Tia phân giác của một góc (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  11. Lý thuyết Hai đường thẳng song song và dấu hiệu nhận biết (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  12. Lý thuyết Tiên đề Euclid. Tính chất của hai đường thẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  13. Lý thuyết Định lí và chứng minh định lí (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  14. Lý thuyết Toán 7 Chương 3 (Kết nối tri thức 2023): Góc và đường thẳng song song hay, chi tiết
  15. Lý thuyết Tổng các góc trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  16. Lý thuyết Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  17. Lý thuyết Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  18. Lý thuyết Các trường hợp bằng nhau của tam giác vuông (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  19. Lý thuyết Tam giác cân. Đường trung trực của đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. Chương 4 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  21. Lý thuyết Thu thập và phân loại dữ liệu (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  22. Lý thuyết Biểu đồ đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  23. Trang download tài liệu, đề thi, website giáo dục nhiều người truy cập nhất Việt Nam
  24. Lý thuyết Chương 5 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  25. Lý thuyết Tỉ lệ thức (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  26. Lý thuyết Tính chất của dãy tỉ số bằng nhau (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  27. Lý thuyết Đại lượng tỉ lệ thuận (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  28. Lý thuyết Đại lượng tỉ lệ nghịch (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  29. Lý thuyết Chương 6 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  30. Lý thuyết Biểu thức đại số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Lý thuyết Đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  32. Lý thuyết Phép cộng và phép trừ đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  33. Lý thuyết Phép nhân đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  34. Lý thuyết Phép chia đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  35. Lý thuyết Chương 7 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  36. Lý thuyết Làm quen với biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Lý thuyết Làm quen với xác suất của biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  38. Lý thuyết Chương 8 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  39. Lý thuyết Quan hệ giữa góc và cạnh đối diện trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  40. Lý thuyết Quan hệ giữa đường vuông góc và đường xiên (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  41. Lý thuyết Quan hệ giữa ba cạnh của một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  42. Lý thuyết Sự đồng quy của ba đường trung tuyến, ba đường phân giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  43. Lý thuyết Chương 9 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  44. Lý thuyết Hình hộp chữ nhật và hình lập phương (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  45. Lý thuyết Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  46. Lý thuyết Chương 10 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán