Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 7 – Kết nối

Lý thuyết Góc ở vị trí đặc biệt. Tia phân giác của một góc (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 18/04/2023 0

Lý thuyết Toán lớp 7 Bài 8:Góc ở vị trí đặc biệt. Tia phân giác của một góc

A. Lý thuyết Góc ở vị trí đặc biệt. Tia phân giác của một góc

1. Góc ở vị trí đặc biệt

a) Hai góc kề bù

• Định nghĩa: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau được gọi là hai góc kề bù.

• Tính chất: Hai góc kề bù có tổng số đo bằng 180°.

Ví dụ:

+ Góc xOy^ và yOz^ có cạnh Oy chung; Ox và Oz là hai tia đối nhau. Do đó xOy^ và yOz^ được gọi là hai góc kề bù.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Vì xOy^ và yOz^ là hai góc kề bù nên xOy^+yOz^=180°.

Chú ý:

• Hai góc kề bù được hiểu là hai góc vừa kề nhau, vừa bù nhau. Trong đó:

– Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía nhau đối với đường thẳng chứa cạnh chung đó.

Ví dụ: Trong hình vẽ dưới đây, góc mOt và góc nOt là hai góc kề nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

– Hai góc bù nhau là hai góc có tổng số đo bằng 180°.

Ví dụ: Trong hình vẽ dưới đây, có ABC^+BCD^=60°+120°=180°. Ta nói ABC^ và BCD^ là hai góc bù nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

• Nếu điểm M nằm trong góc xOy thì ta nói tia OM nằm giữa hai cạnh (hai tia) Ox và Oy của góc xOy. Khi đó ta có: xOM^+MOy^=xOy^

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

b) Hai góc đối đỉnh

• Định nghĩa: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

• Tính chất: Hai góc đối đỉnh thì bằng nhau.

Ví dụ:

+ Hai đường thẳng xx‘, yy‘ cắt nhau tại O. Khi đó Ox và Ox‘ là hai tia đối nhau; Oy và Oy‘ là hai tia đối nhau. Nên ta có các cặp góc đối đỉnh là: xOy^ và x‘Oy‘^; xOy‘^ và x‘Oy^.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Có xOy^ và x‘Oy‘^ là hai góc đối đỉnh thì xOy^=x‘Oy‘^;

Ta lại có xOy‘^ và x‘Oy^ là hai góc đối đỉnh thì xOy‘^=x‘Oy^.

Chú ý:

• Hai đường thẳng xx‘, yy‘ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là: xx‘⊥yy‘.

Ví dụ: Hai đường thẳng xx‘, yy‘ cắt nhau tại O sao cho xOy^=90° thì xx‘⊥yy‘.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

2. Tia phân giác của một góc

• Định nghĩa: Tia nằm giữa hai cạnh của một góc và tạo với hai cạnh ấy hai góc bằng nhau được gọi là tia phân giác của góc đó.

• Tính chất: Khi Oz là tia phân giác của góc xOy thì xOz^=yOz^=12xOy^.

• Đường thẳng chứa tia phân giác của một góc gọi là đường phân giác của góc đó.

Ví dụ:

+ Cho xOy^=80° và Oz là tia phân giác của góc xOy. Khi đó ta có:

xOz^=yOz^=12xOy^=1280°=40°

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Chú ý:

• Cách vẽ tia phân giác của một góc:

Chẳng hạn: Vẽ tia phân giác Oz của xOy^=80°

+ Vẽ góc xOy^=80°.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Oz là tia phân giác của góc xOy nên yOz^=12xOy^=1280°=40°. Đánh dấu điểm ứng với vạch 40° của thước đo góc.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Kẻ Oz đi qua điểm đã đánh dấu. Ta được Oz là tia phân giác xOy^.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

B. Bài tập tự luyện

B1. Bài tập tự luận

Bài 1. Cho hình vẽ dưới đây, biết mAt^=125°. Tính số đo các góc còn lại trong hình vẽ.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Ta có: nAp^=mAt^ (hai góc đối đỉnh)

⇒nAp^=125°

Ta có:     mAt^+nAt^=180° (hai góc kề bù)

Thay số: 125°+nAt^=180°

⇒nAt^=180°−125°

nAt^=55°

Lại có: mAp^=nAt^ (hai góc đối đỉnh)

⇒mAp^=55°

Vậy: nAp^=125°; nAt^=55°; mAp^=55°.

Bài 2. Cho hình vẽ dưới đây, hãy kể tên các cặp góc kề bù.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Hai góc mOt^ và nOt^ có cạnh Ot chung; cạnh Om và On là hai tia đối nhau.

 Nên mOt^ và nOt^ là cặp góc kề bù.

b) Hai góc CFA^ và CFB^ có cạnh FC chung; cạnh FA và FB là hai tia đối nhau.

 Nên CFA^ và CFB^ là cặp góc kề bù.

Bài 3. Vẽ góc xOy có số đo bằng 72°. Vẽ tia Om là tia đối của tia Ox.

a) Viết tên cặp góc kề bù trong hình vừa vẽ.

b) Tính số đo góc yOm.

c) Vẽ tia Ot là tia phân giác của góc xOy. Tính số đo các góc tOy và tOm.

Hướng dẫn giải

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

a) xOy^ và yOm^ có Oy chung; Om là tia đối của tia Ox.

⇒xOy^ và yOm^ là hai góc kề bù.

b) Ta có: xOy^+yOm^=180° (hai góc kề bù)

Thay số: 72°+yOm^=180°

⇒yOm^=180°−72°

yOm^=108°

Vậy: yOm^=108°

c)

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Vì Ot là tia phân giác của góc xOy nên: tOy^=tOx^=12xOy^=12⋅72°=36°

Có: tOm^+tOx^=180° (hai góc kề bù)

Thay số: tOm^+36°=180°

⇒tOm^                  =180°−36°

tOm^                  =144°

Vậy: tOy^=36°; tOm^                  =144°.

B2. Bài tập trắc nghiệm

Bài 4. Tia Ot nào trong các hình dưới đây là tia phân giác của góc xOy.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

A. Hình 1;                                                                           

B. Hình 2;                                                                           

C. Hình 3;                                                                           

D. Hình 4.

Hướng dẫn giải

Đáp án đúng là: D

Tia phân giác của một góc là tia nằm trong góc và tạo với hai cạnh của góc đó hai góc bằng nhau.

Hình 1 và hình 3 tia Ot không nằm trong góc nên tia Ot không phải tia phân giác của góc xOy.

Hình 2 có tia Ot nằm trong góc nhưng không tạo với hai cạnh của góc đó hai góc bằng nhau nên tia Ot trong hình 2 không phải tia phân giác của góc xOy.

Chỉ có hình 4 là tia Ot nằm trong góc và tạo với hai cạnh của góc đó hai góc bằng nhau nên Ot là tia phân giác của góc xOy.

Do đó chọn phương án D.

Bài 5. Chọn đáp án đúng.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

A. AID^ và  CIB^ là hai góc kề bù;                                       

B. ABC^  và  ADC^ là hai góc kề bù;                                   

C. AIB^  và  BIC^ là hai góc kề bù;                                      

D. AIB^  và  DIC^ là hai góc kề bù.

Hướng dẫn giải

Đáp án đúng là: C

AID^ và  CIB^ là hai góc hai góc kề bù (sai, vì AID^ và  CIB^ là hai góc hai góc đối đỉnh loại phương án A);

ABC^  và  ADC^ là hai góc kề bù (sai, vì ABC^  và  ADC^ là hai góc của tứ giác ABCD, loại phương án B);

AIB^  và  BIC^ là hai góc kề bù (đúng, chọn phương án C);

AIB^  và  DIC^ là hai góc kề bù (sai, vì AIB^  và  DIC^ là hai góc đối đỉnh, loại phương án D).

Bài 6. Tìm số đo x:

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1) 

A. 65°;                                                                                

B. 120°;                                                                              

C. 95°;                                                                                

D. 50°.

Hướng dẫn giải

Đáp án đúng là: D

Ta có góc aOb và góc bOc là hai góc kề bù nên aOb^+bOc^=180°.

Suy ra x=aOb^=180°−bOc^=180°−130°=50°.

Vậy x = 50o.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải phương trình cotx – tanx + 4sin2x = 2/sin2x

Next post

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương

Bài liên quan:

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết

Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  2. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  4. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  5. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  6. Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  7. Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  8. Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  9. Lý thuyết Toán 7 Chương 2 (Kết nối tri thức 2023): Số thực hay, chi tiết
  10. Lý thuyết Hai đường thẳng song song và dấu hiệu nhận biết (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  11. Lý thuyết Tiên đề Euclid. Tính chất của hai đường thẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  12. Lý thuyết Định lí và chứng minh định lí (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  13. Lý thuyết Toán 7 Chương 3 (Kết nối tri thức 2023): Góc và đường thẳng song song hay, chi tiết
  14. Lý thuyết Tổng các góc trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  15. Lý thuyết Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  16. Lý thuyết Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  17. Lý thuyết Các trường hợp bằng nhau của tam giác vuông (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  18. Lý thuyết Tam giác cân. Đường trung trực của đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  19. Chương 4 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. Lý thuyết Thu thập và phân loại dữ liệu (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  21. Lý thuyết Biểu đồ đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  22. Trang download tài liệu, đề thi, website giáo dục nhiều người truy cập nhất Việt Nam
  23. Lý thuyết Chương 5 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  24. Lý thuyết Tỉ lệ thức (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  25. Lý thuyết Tính chất của dãy tỉ số bằng nhau (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  26. Lý thuyết Đại lượng tỉ lệ thuận (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  27. Lý thuyết Đại lượng tỉ lệ nghịch (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  28. Lý thuyết Chương 6 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  29. Lý thuyết Biểu thức đại số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  30. Lý thuyết Đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Lý thuyết Phép cộng và phép trừ đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  32. Lý thuyết Phép nhân đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  33. Lý thuyết Phép chia đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  34. Lý thuyết Chương 7 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  35. Lý thuyết Làm quen với biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  36. Lý thuyết Làm quen với xác suất của biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Lý thuyết Chương 8 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  38. Lý thuyết Quan hệ giữa góc và cạnh đối diện trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  39. Lý thuyết Quan hệ giữa đường vuông góc và đường xiên (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  40. Lý thuyết Quan hệ giữa ba cạnh của một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  41. Lý thuyết Sự đồng quy của ba đường trung tuyến, ba đường phân giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  42. Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  43. Lý thuyết Chương 9 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  44. Lý thuyết Hình hộp chữ nhật và hình lập phương (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  45. Lý thuyết Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  46. Lý thuyết Chương 10 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán