Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 7 – Kết nối

Lý thuyết Hai đường thẳng song song và dấu hiệu nhận biết (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 18/04/2023 0

Lý thuyết Toán lớp 7 Bài 9: Hai đường thẳng song song và dấu hiệu nhận biết

A. Lý thuyết Hai đường thẳng song song và dấu hiệu nhận biết

1. Các góc tạo bởi một đường thẳng cắt hai đường thẳng

• Cho đường thẳng c cắt hai đường thẳng a và b lần lượt tại A và B tạo thành bốn góc đỉnh A và bốn góc đỉnh B. Khi đó ta có:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

  + Các cặp góc so le trong là: A3 và B1; A4 và B2.

  + Các cặp góc đồng vị là: A1 và B1; A2 và B2; A3 và B3; A4 và B4.

  + Các cặp góc trong cùng phía là: A4 và B1; A3 và B2.

• Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:

  + Hai góc so le trong còn lại bằng nhau.

  + Hai góc đồng vị bằng nhau.

Ví dụ:

+ Cho đường thẳng c cắt hai đường thẳng phân biệt a, b lần lượt tại A và B.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Ta có A4^;B2^ là cặp góc so le trong

Nếu A4^=B2^ thì cặp góc so le trong còn lại và các cặp góc đồng vị bằng nhau:

A3^=B1^A1^=B1^; A2^=B2^ ;  A3^=B3^;  A4^=B4^

2. Dấu hiệu nhận biết hai đường thẳng song song

• Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau hoặc một cặp góc đồng vị bằng nhau thì a và b song song với nhau. Kí hiệu là: a // b.

• Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

Ví dụ:

+ Cho hình vẽ:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Ta có: A1^=B1^=60°. Mà hai góc ở vị trí so le trong.

Do đó: a // b (dấu hiệu nhận biết hai đường thẳng song song).

+ Cho hình vẽ:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Ta có: A1^=B1^=60°. Mà hai góc ở vị trí đồng vị.

Do đó: a // b (dấu hiệu nhận biết hai đường thẳng song song).

+ Cho hình vẽ:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Ta có: a⊥c và b⊥c

Do đó: a // b.

Chú ý:

+ Muốn vẽ đường thẳng đi qua một điểm và song song với một đường thẳng cho trước bằng góc 60° của êke ta làm như sau:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Tương tự ta có thể dùng góc vuông hoặc góc 30° của êke (thay cho góc 60°) để vẽ đường thẳng đi qua một điểm và song song với đường thẳng cho trước.

B. Bài tập tự luyện

B1. Bài tập tự luận

Bài 1. Cho hình vẽ:

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

a) Tìm một góc ở vị trí so le trong với góc DEM.

b) Tìm một góc ở vị trí đồng vị với góc CMN.

c) Tìm một góc ở vị trí trong cùng phía với góc MNE.

Hướng dẫn giải

a) Có ME cắt MN và DE nên góc ở vị trí so le trong với góc DEM là góc EMN.

b) Có CD cắt MN và DE nên góc ở vị trí đồng vị với góc CMN là góc CDE (hay MDE).

c) Có CE cắt MN và DE nên góc ở vị trí trong cùng phía với góc MNE là góc NED (hay CED).

Bài 2. Cho các hình dưới đây, hãy giải thích tại sao AB // CD.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Ta có: ABD^=BDC^=35°

Mà hai góc ở vị trí so le trong.

Do đó AB // CD (dấu hiệu nhận biết hai đường thẳng song song).

b) Ta có: ECD^=CBA^=55°

Mà hai góc ở vị trí đồng vị.

Do đó AB // CD (dấu hiệu nhận biết hai đường thẳng song song).

c) Ta có: AB⊥AD và DC⊥AD

Do đó: AB // CD (dấu hiệu nhận biết hai đường thẳng song song).

Bài 3. Hãy vẽ hai đoạn thẳng AB và MN sao cho AB//MN và AB=MN.

Hướng dẫn giải

+ Vẽ đoạn thẳng AB với độ dài bất kì.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Dùng góc của êke vẽ tiếp theo các bước dưới đây.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Ta được AB // MN và AB=MN.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

B2. Bài tập trắc nghiệm

Bài 4. Cho hình vẽ

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Biết x // y, H3^=39°.Tính H3^+K4^.

A. 180°;                                                                              

B. 141°;                                                                              

C. 120°;                                                                              

D. 138°.

Hướng dẫn giải

Đáp án đúng là: A

Vì x // y nên suy ra H3^ và K3^ là hai góc đồng vị ⇒K3^=H3^=39° (1)

Mà K3^ và K4^là hai góc kề bù nên   ⇒K3^+K4^=180° (2)

Từ (1) và (2) ⇒H3^+K4^=180°

Vậy ⇒H3^+K4^=180°

Bài 5. Cho tia Ot nằm trong góc mOn, mOt^=tOn^ thì

A. Ot là tia phân giác của góc mOn;                                  

B. Ot là tia nằm phía trong của góc mOn;                  

C. Ot là tia nằm phía ngoài của góc mOn;                         

D. Ot là tia nằm giữa hai cạnh Om và On.

Hướng dẫn giải

Đáp án đúng là: A

Ot là tia nằm trong góc mOn và tạo với hai cạnh của góc đó hai góc mOt^=tOn^ nên Ot là tia phân giác của góc mOn.

Do đó chọn đáp án A.

Bài 6. Tính số đo của góc aOb. Biết zOb^=48°, Oz là tia phân giác của góc aOb.

Hai đường thẳng song song và dấu hiệu nhận biết (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

A. 80°;                                                                                

B. 96°;                                                                                

C. 120°;                                                                              

D. 130°.

Hướng dẫn giải

Đáp án đúng là: B

Ta có: aOz^=zOb^=48° (vì Oz là tia phân giác góc xOy)

Suy ra aOb^=aOz^+zOb^=48°+48°=96°.

Vậy aOb^=96°.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải các phương trình sau sin6x + cos6x + sin4x/2 = 0

Next post

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương

Bài liên quan:

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết

Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  2. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  4. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  5. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  6. Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  7. Lý thuyết Số vô tỉ. Căn bậc hai số học (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  8. Lý thuyết Tập hợp các số thực (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  9. Lý thuyết Toán 7 Chương 2 (Kết nối tri thức 2023): Số thực hay, chi tiết
  10. Lý thuyết Góc ở vị trí đặc biệt. Tia phân giác của một góc (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  11. Lý thuyết Tiên đề Euclid. Tính chất của hai đường thẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  12. Lý thuyết Định lí và chứng minh định lí (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  13. Lý thuyết Toán 7 Chương 3 (Kết nối tri thức 2023): Góc và đường thẳng song song hay, chi tiết
  14. Lý thuyết Tổng các góc trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  15. Lý thuyết Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  16. Lý thuyết Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  17. Lý thuyết Các trường hợp bằng nhau của tam giác vuông (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  18. Lý thuyết Tam giác cân. Đường trung trực của đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  19. Chương 4 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. Lý thuyết Thu thập và phân loại dữ liệu (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  21. Lý thuyết Biểu đồ đoạn thẳng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  22. Trang download tài liệu, đề thi, website giáo dục nhiều người truy cập nhất Việt Nam
  23. Lý thuyết Chương 5 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  24. Lý thuyết Tỉ lệ thức (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  25. Lý thuyết Tính chất của dãy tỉ số bằng nhau (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  26. Lý thuyết Đại lượng tỉ lệ thuận (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  27. Lý thuyết Đại lượng tỉ lệ nghịch (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  28. Lý thuyết Chương 6 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  29. Lý thuyết Biểu thức đại số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  30. Lý thuyết Đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Lý thuyết Phép cộng và phép trừ đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  32. Lý thuyết Phép nhân đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  33. Lý thuyết Phép chia đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  34. Lý thuyết Chương 7 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  35. Lý thuyết Làm quen với biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  36. Lý thuyết Làm quen với xác suất của biến cố (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Lý thuyết Chương 8 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  38. Lý thuyết Quan hệ giữa góc và cạnh đối diện trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  39. Lý thuyết Quan hệ giữa đường vuông góc và đường xiên (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  40. Lý thuyết Quan hệ giữa ba cạnh của một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  41. Lý thuyết Sự đồng quy của ba đường trung tuyến, ba đường phân giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  42. Lý thuyết Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  43. Lý thuyết Chương 9 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  44. Lý thuyết Hình hộp chữ nhật và hình lập phương (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  45. Lý thuyết Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  46. Lý thuyết Chương 10 (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán