Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

30 câu Trắc nghiệm Toán 11 Chương 3 có đáp án 2023: Vectơ trong không gian. Quan hệ vuông góc trong không gian

By admin 10/10/2023 0

Trắc nghiệm Chương 3 có đáp án: Vectơ trong không gian. Quan hệ vuông góc trong không gian – Toán lớp 11

Câu 1: Cho tứ diện ABCD. Gọi M, N, P, và Q lần lượt là trung điểm của AB, AC, CD và DB.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Bộ ba vecto đồng phẳng là:

   A. AB→, BC→, AD→

   B. MP→, BC→, AD→

   C. AC→, MP→, BD→

   D. MP→, PQ→, CD→

   b) Bộ ba vecto không đồng phẳng là:

   A. AB→, MN→, CA→

   B. MP→, BC→, AD→

   C. AD→, MP→, PQ→

   D. MP→, PQ→, PD→

Đáp án: B, D

   1a. Các đường thẳng MN, NP, PQ, QM cùng nằm trong một mặt phẳng và BC, AD cùng song song với mặt phẳng (MNPQ). Suy ra ba vecto MP→, BC→,AD→ đồng phẳng

   1b. Phương án A sai vì : Ba đường thẳng AB, MN, CA cùng trong mặt phẳng (ABC) nên ba vecto AB→,MN→,CA→ đồng phẳng

   Phương án B sai vì: hai đường thẳng BC, AD cùng song song với mặt phẳng (MNPQ) có chứa đường thẳng MP nên ba vecto MP→, BC→, AD→ đồng phẳng

   Phương án C sai vì : Đường thẳng AD // (MNPQ) và mặt phẳng này chứa hai đường thẳng MP, PQ nên ba vecto AD→, MP→,PQ→ đồng phẳng

   Phương án D đúng vì : Đường thẳng BD cắt mặt phẳng (MNPQ) và nó chứa hai đường thẳng MP, PQ nên MP→, PQ→, BD→ không đồng phẳng

Câu 2: Điều kiện cần và đủ để ba vecto a→, b→, c→ không đồng phẳng là:

   A. Ba đường thẳng chứa chúng không cùng thuộc một mặt phẳng.

   B. Ba đường thẳng chứa chúng cùng thuộc một mặt phẳng.

   C. Ba đường thẳng chứa chúng không cùng song song với một mặt phẳng.

   D. Ba đường thẳng chứa chúng cùng song song với một mặt phẳng.

Đáp án: C

Câu 3: Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD. Không thể kết luận được điểm G là trọng tâm của tứ diện ABCD trong trường hợp

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   A. GM = GN

   B. GM→ + GN→ = 0→

   C. GA→ + GB→ + GC→ + GD→ = 0→

   D. PG→ = 1/4(PA→ + PB→ + PC→ + PD→, với P là điểm bất kì.

Hiển thị đáp án

Đáp án: A

   Điều kiện GM = GN mới chứng tỏ điểm G nằm trên mặt phẳng trung trực của đoạn thẳng MN.

Câu 4: Cho hình chóp S.ABCD, với O là giao điểm của AC và BD. Mệnh đề nào sau đây là đúng?

   A. Nếu ABCD là hình bình hành thì SA→ + SB→ = SC→ + SD→

   B. Nếu SA + SC = SB + SD thì ABCD là hình bình hành.

   C. Nếu ABCD là hình bình hành thì SA→ + SB→ + SC→ + SD→ = 0→

   D. Nếu SA→ + SB→ + SC→ + SD→ = 4SO→

Đáp án: D

   Vì ABCD là hình bình hành có O là giao điểm của AC và BD nên O là trung điểm của AC và BD.

   Theo tính chất trung điểm , ta có:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 5: Cho hình lăng trụ ABC.A’B’C’, với G và G’ là trọng tâm của tam giác ABC và A’B’C’. đặt AA’→ = a→; AB→ = b→; AC→ = c→.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Vecto B’C→ bằng:

   A. a→ – b→ – c→

   B. c→ – a→ – b→

   C. b→ – a→ – c→

   D. a→ + b→ + c→

   b) Vecto AG’→ bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   c) Gọi M là giao điểm của AB’ và A’B. vecto GM→ bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: B, D, C

   a) Ta có:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   b) Gọi N là trung điểm của BC

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   c)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 6: Các đường thẳng cùng vuông góc với một đương thẳng thì:

   A. Thuộc một mặt phẳng

   B. Vuông góc với nhau

   C. Song song với một mặt phẳng

   D. Song song với nhau

Đáp án: C

Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD) vì:

   A. AC ⊂ (SAC) và AC ⊥ (SBD) do AC ⊥ SO và AC ⊥ BD

   B. AC ⊂ (ABCD) và AC ⊥ (SBD) do AC ⊥ SO và AC ⊥ BD

   C. AC ⊂ (SAC) và AC ⊥ SO ⊂ (SBD)

   D. AC ⊂ (ABCD) và AC ⊥ SO ⊂ (SBD) và góc AOS bằng 900

   b) Giả sử góc BAD bằng 600, khoảng cách từ S đến mặt phẳng (ABCD) bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   c) Góc giữa hai mặt bên hình chóp S.ABCD và mặt phẳng đáy có tan bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Đáp án: B, A, A

Câu 8: Cho hai mặt phẳng (P) và (Q), với hai vecto pháp tuyến lần lượt là n1→ và n2→. Khi (P) ∩ (Q) thì:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: D

Câu 9: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = a/2.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Góc giữa hai mặt phẳng (SAB) và (ABC) bằng:

   A. 00      B. 450

   C. 600      D. 900

   b) Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

   A. 00      B. 450

   C. 600      D. 900

   c) M là trung điểm của BC. Khi đó góc giữa hai mặt phẳng (SAM) và (SBC) bằng:

   A. 00      B. 300

   C. 450      D. 600

   d) Từ A hạ AH ⊥ SM. Khi đó góc giữa hai vecto SA→ và AH→ bằng:

   A. 400      B. 450

   C. 900      D. 1500

Đáp án: D, C, B, A

   9a. SA ⊥ (ABC) ⇒ (SAB) ⊥ (ABC)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   9b. SA ⊥ (ABC) ⇒ SA ⊥ AB ⊂ (ABC) và SA ⊥ AC ⊂ (ABC)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   9c. tam giác ABC đều nên AM ⊥ BC ⇒ SM ⊥ BC (theo định lí ba đường vuông góc)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   9d. AH ⊥ SM và AH ⊥ BC (do BC ⊥ (SAM)) ⇒ AH ⊥ (SBC)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 10: Cho tam giác ABC vuông tại B. trên đường thẳng vuông góc với mặt phẳng (ABC) tại A lấy một điểm S:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Góc giữa hai mặt phẳng (ABC) và (SBC) là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   b) Từ A hạ AH ⊥ SB. Gọi góc giữa hai vecto AH→ và BC→ là ∝. Khi đó:

   A. ∝ = 00      B. 00 ≤ ∝ ≤ 900

   C. ∝ = 900      D. 900 ≤ ∝ ≤ 1800

   c) Mặt phẳng (P) đi qua AH, vuông góc với đường thẳng SB và cắt SC tại K , khi đó:

   A. HK cắt BC      B. HK // BC

   C. HK ⊥ BC      D. HK chéo BC

Đáp án: B, C, B

   10c. SB ⊥ (P) ⇒ SB ⊥ HK ⊂ (P); BC ⊥ (SAB) ⇒ SB ⊥ BC ⇒ HK // BC

Câu 11: Cho hình chóp tam giác đều S.ABC và đường cao SH.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) SA ⊥ BC vì

   A. SA ⊥ (SBC) ⊃BC (do SA ⊥ AM và SA ⊥ NC)

   B. SA ⊥ (SBC) ⊃ BC (do SA ⊥ SB và SA ⊥ SC)

   C. BC ⊥ (SAM) ⊃ SA (do BC ⊥ AM và BC ⊥ SH)

   D. BC ⊥ (SAM) ⊃ BC (do BC⊥ SH)

   b) Cặp mặt phẳng nào sau đây không vuông góc với nhau

   A. (SAM) và (ABC)

   B. (SAM) và (SBC)

   C. (SCN) và (ABC)

   D. (SAN) và (SBC)

   c) Góc giữa gia mặt phẳng (ABC) và (SBC) là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   d) Cặp đường thẳng nào sau đây không vuông góc với nhau?

   A. SA và BC      B. SM và CN

   C. SB và AC      D. SC và AB

Đáp án: C, D, A, B

   11b. (SAM) ⊥(ABC) vì (SAM) ⊃ SH ⊥ (ABC)

   (SAM) ⊥ (SBC) vì (SBC) ⊃ BC ⊥ (SAM)

   (SCN) ⊥ (ABC) vì (SCN) ⊃ SH ⊥ (ABC)

   Hai mặt phẳng (SAN) và (SBC) không vuông góc vì không có đường thẳng nào trong mặt phẳng này vuông góc với mặt phẳng kia

   11c. (SBC) ∩ (ABC) = BC; (ABC) ⊃ AM ⊥ BC; (SBC) ⊃ SM ⊥ BC

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   11d. SA ⊥ BC vì BC ⊥(SAM) ⊃ SA. . SM và CN không vuông góc với nhau vì nếu CN ⊥ SM thì CN ⊥ (SAM). Điều này không xảy ra vì từ điểm C có hai đường thẳng CN và CB cùng vuông góc với mặt phẳng (SAM)

   SB ⊥ AC vì AC ⊥ (SBH) ⊃ SB

   SC ⊥ AB vì AB ⊥ (SCN) ⊃ SC

Câu 12: Cho hình tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bẳng a. gọi O là tâm của đáy ABCD.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Độ dài đoạn thẳng SO là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   b) Gọi M là trung điểm của SC. Hai mặt phẳng (SAC) và (MBD) vuông góc với nhau vì:

   A. góc giữa hai mặt phẳng này là góc AOD bằng 900

   B. (SAC) ⊃ AC ⊥ (MBD).

   C. (MBD) ⊃ BD ⊥ (SAC)

   D. (SAC) ⊃ SO ⊥ BD = (SAC) ∩ (MBD)

   c) Góc giữa hai mặt phẳng (MBD) và (ABCD) bằng:

   A. 300      B. 450

   C. 600      D. 900

   d) Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (ABCD). Diện tích của tam giác M’BD bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: B, C, B, D

   a) Tứ giác ABCD là hình vuông nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   S.ABCD là hình chóp tứ giác đều nên SO ⊥ (ABCD)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   ⇒ BD ⊥ (SAC).vì BD ⊂ (MBD) ⇒ (SAC) ⊥ (MBD)〗

   c) (ABCD) ∩ (MBD) = BD; (MBD) ⊃ MO ⊥ BDvà (ABCD) ⊃ OC ⊥ BD

   Góc giữa hai mặt phẳng (ABCD) và (MBD) là góc COM. Tam giác SOC cân tại O nên OM ⊥SC và

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   d) Tam giác SOC vuông tại O có OM là đường trung tuyến nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Diện tích tam giác MBD là: Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Câu 13: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc BAD bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = (a√6)/3.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   a) Góc giữa hai mặt phẳng (SBD) và (SAC) bằng:

   A. 300      B. 450      C. 600 D. 900

   b) Từ O kẻ OK ⊥ SA. ∆AKO ∼ ∆ACS vì:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   c) Độ dài OK là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   d) Đường thẳng SA vuông góc với mặt phẳng.

   A. (KDB)      B. (SDB)      C. (SDC)      D. (SBC)

   e) Hai mặt phẳng (SAB) và (SAD):

   A. Không vuông góc với nhau vì góc giữa chúng là

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   B. Không vuông góc với nhau vì góc giữa chúng là

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   C. Vuông góc với nhau vì góc giữa chúng là

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   D. Vuông góc với nhau vì góc giữa chúng là

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án: D, D, B, A, C

   13a. Trong mặt phẳng (SBD) có BD vuông góc với AC và SC nên BD vuông góc với mặt phẳng (SAC). Do đó góc giữa hai mặt phẳng bằng 900

   13b. ∆AKO đồng dạng với ∆ACS vì hai tam giác vuông có góc KAO chung

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   13c.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   Hai tam giác AKO và ACS đồng dạng nên:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   13d. Vì DB ⊥ (SAC) nên DB ⊥ SA và OK ⊥ SA(theo giả thiết)

   ⇒ SA ⊥ (KDB)

   13e. SA ⊥ (KDB) nên SA ⊥ KB ⊂ (SAB) và SA ⊥ KD ⊂ (SAD)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

    Tam giác KDB vuông tại K vì có OK = OB = OD = a/2 ⇒ (SAB) ⊥ (SAD).

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải Hóa Học 11 Bài 13: Luyện tập: Tính chất của Nitơ, photpho và các hợp chất của chúng

Next post

Lý thuyết Lịch sử 11: Bài 22: Xã hội Việt Nam trong cuộc khai thác lần thứ nhất của thực dân Pháp mới nhất

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán