Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

50 Bài tập Phép biến hình- Phép tịnh tiến (có đáp án)- Toán 11

By admin 10/10/2023 0

Bài tập Toán 11 Chương 1 Bài 1-2: Phép biến hình. Phép tịnh tiến

A. Bài tập Phép biến hình- Phép tịnh tiến

I. Bài tập trắc nghiệm

Bài 1: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(1;1) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:

A. A’B’ = 5      

B. A’B’ = 10

 

C. A’B’ = 11      

D. A’B’ = 12

Lời giải:

Đáp án: A

Phép tịnh tiến theo vecto v→(1;1) biến A(0; 2) thành A’(1; 3) và biến B(-2; 1) thành B’(-1; 2) ⇒ A’B’ = 5

Bài 2: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(1;0) biến đường thẳng d: x – 1 = 0 thành đường thẳng d’ có phương trình:

A. x – 1 = 0      

B. x – 2 = 0

C. x – y – 2 = 0      

D. y – 2 = 0

Lời giải:

Đáp án: B

Lấy M(x; y) thuộc d; gọi M’(x’; y’) là ảnh của M qua phép tịnh tiến theo vecto v→(1;0) thì

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Thay vào phương trình d ta được x’ – 2 = 0, hay phương trình d’ là x – 2 = 0 .

Bài 3: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(3;1) biến đường thẳng d: 12x – 36y + 101 = 0 thành đường thẳng d’ có phương trình:

A. 12x – 36y – 101 = 0      

B. 12x + 36y + 101 = 0

 

C.12x + 36y – 101 = 0      

D. 12x – 36y + 101 = 0.

Lời giải:

Đáp án: D

Vecto chỉ phương của d có tọa độ (3; 1) cùng phương với vecto v→ nên phép tịnh tiến theo vecto v→(3;1) biến đường thẳng d thành chính nó.

Bình luận: Nếu không tinh ý nhận ra điều trên, cứ làm bình thường theo quy trình thì sẽ rất lãng phí thời gian.

Bài 4: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(-2;-1) biến thành parabol (P): y = x2 thành parabol (P’) có phương trình:

A. y = x2 + 4x – 5

B. y = x2 + 4x + 4

C. y = x2 + 4x + 3

D. y = x2 – 4x + 5

Lời giải:

Đáp án: C

Lấy M(x; y) thuộc (P); gọi M’(x’; y’) là ảnh của M qua phép tịnh tiến theo vecto v→(-2; -1) thì:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

thay vào phương trình (P) được y’ + 1 = (x’+ 2)2 ⇒ y’ = x’2 + 4x’ + 3 hay y = x2 + 4x + 3.

Bài 5: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(-3;-2) biến đường tròn có phương trình (C): x2 + (y – 1)2 = 1 thành đường tròn (C’) có phương trình:

A. (x – 3)2 + (y + 1)2 = 1

B. (x + 3)2 + (y + 1)2 = 1

C. (x + 3)2 + (y + 1)2 = 4

D. (x – 3)2 + (y – 1)2 = 4

Lời giải:

Đáp án: B

Đường tròn (C) có tâm I(0; 1) và bán kính R = 1.

Phép tịnh tiến theo vecto v→(-3; -2) biến tâm I(0; 1) của (C) thành tâm I’ của (C’) có cùng bán kính R’ = R = 1

Ta cóBài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

⇒ phương trình (C’) là (x + 3)2 + (y + 1)2 = 1.

Chú ý: Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

Bài 6: Phép biến hình biến điểm M thành điểm M’ thì với mỗi điểm M có:

A. Ít nhất một điểm M’ tương ứng

B. Không quá một điểm M’ tương ứng

C. Vô số điểm M’ tương ứng

D. Duy nhất một điểm M’ tương ứng

Lời giải:

Đáp án: D

Hướng dẫn giải: quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó gọi là phép biến hình trong mặt phẳng.

Bài 7: Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào sau đây là một phép biến hình.

A. Quy tắc biến O thành giao điểm của d với các cạnh tam giác ABC

B. Quy tắc biến O thành giao điểm của d với đường tròn O

C. Quy tắc biến O thành hình chiếu của O trên các cạnh của tam giác ABC

D. Quy tắc biến O thành trực tâm H, biến H thành O và các điểm khác H và O thành chính nó.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: D

Các quy tắc A, B, C đều biến O thành nhiều hơn một điểm nên đó không phải là phép biến hình. Quy tắc D biến O thành điểm H duy nhất nên đó là phép biến hình. Chọn đáp án D

Bài 8: Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto v→ biến M thành A thì v→ bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: C

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài 9: Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto v→ bằng:

A. IH→       

B. AO→       

C. 2OI→       

D. 12BC→

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: C

Gọi A’ là điểm đối xứng với A qua O. Ta có: BH // A’C suy ra BHCA’ là hình bình hành do đó HA’ cắt BC tại trung điểm I của BC. Mà O là trung điểm của AA’ suy ra OI là đường trung bình của tam giác AHA’ suy ra AH→ = 2OI→

Cách 2: Gọi B’ là điểm đối xứng với B qua O, chứng minh AHCB’ là hình bình hành rồi suy ra AH→=BC→=2OI→

Bài 10: Mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(2; -3) biến đường thẳng d: 2x + 3y – 1 = 0 thành đường thẳng d’ có phương trình

A. 3x + 2y – 1 = 0

B. 2x + 3y + 4 = 0

C. 3x + 2y + 1 = 0

D. 2x + 3y + 1 = 0

Lời giải:

Đáp án: B

Phép tịnh tiến theo vecto v→(2; -3) biến điểm M (x; y) thành điểm M’(x’; y’) thì:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

hay vào phương trình d được:

2(x’ – 2) + 3(y’ + 3) – 1 = 0 ⇒ 2x’ + 3y’ + 4 = 0

hay 2x + 3y + 4 = 0.

II. Bài tập tự luận có lời giải

Bài 1: Tìm mệnh đề đúng trong các mệnh đề sau:

A. phép tịnh tiến theo vecto v→ biến M thành M’ thì v→ = M‘M→

B. Phép tịnh tiến là phép đồng nhất khi vecto tịnh tiến là O→

C. Phép tịnh tiến theo vecto v→ biến M thành M’ và N thành N’ thì tứ giác MNM’N’ là hình bình hành

D. Phép tịnh tiến theo vecto v→ biến đường tròn (O;R) thành đường tròn (O;R)

Lời giải:

Đáp án: B

Phương án A. v→ = MM‘→ mới đúng nghĩa. Phương án C. Tứ giác MNN’M’ mới là hình bình hành. Phương án D. phép tịnh tiến theo vecto v→ chi biến đường tròn (O; R) thành đường tròn (O; R) khi vecto tịnh tiến bằng vecto không.

Bài 2: Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

A. T12 BC→(F) = E       

B . TDE→(B) = F

C. T2DG→ (A) = G       

D. T12 GA→(D) = G

Lời giải:

Đáp án: C

Bài 3: Trong mặt phẳng tọa độ, phép tịnh tiến theo v→(1;2) biến điểm M (-1; 4) thành điểm M’ có tọa độ là?

Lời giải:

Thay vào công thức:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài 4: Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto v→ biến M thành M’, thì tọa độ vecto v→ là:

Lời giải:

Ta có: x’- x = 13; y’- y = 7

Bài 5: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(0;0) biến điểm A(0;2) thành điểm A’ có tọa độ:

Lời giải:

Đáp án: D

Bài 6: Trong mặt phẳng cho đường thẳng d và M. Dựng hình chiếu vuông góc M’ của điểm M lên đường thẳng d.

Lời giải:

Từ M kẻ đường thẳng vuông góc với d cắt d tại M’

⇒ M’là hình chiếu của M trên đường thẳng d

Giải bài tập Toán 11 chương 1 bài 1: Phép biến hình

Bài 7 Cho trước số a dương, với mỗi điểm M trong mặt phẳng, gọi M’ là điểm sao cho MM’ = a. Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên có phải là một phép biến hình không?

Lời giải:

Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên không phải là một phép biến hình vì M’ không phải là điểm duy nhất được xác định trên mặt phẳng

Ví dụ minh họa: a = 4 cm

Giải bài tập Toán 11 chương 1 bài 1: Phép biến hình

Bài 8 Giải bài tập Toán 11 chương 1 bài 2: Phép tịnh tiế

Lời giải:

Giải bài tập Toán 11 chương 1 bài 2: Phép tịnh tiế

Bài 9 Cho tam giác ABC có G là trọng tâm. Dựng ảnh của tam giác ABC qua phép tịnh tiến theo vectơ AG . Dựng điểm D sao cho phép tịnh tiến theo vectơ AG biến D thành A.

Lời giải:

Giải bài tập Toán 11 chương 1 bài 2: Phép tịnh tiế

<=> A là trung điểm của đoạn thẳng DG

Bài 10 Trong mặt phẳng tọa độ Oxy cho vectơ v→ = (-1; 2), A(3; 5), B(-1; 1) và đường thẳng d có phương trình x – 2y + 3 = 0.

a. Tìm tọa độ của các điểm A’, B’ theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v.

b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v→.

c. Tìm phương trình của đường thẳng d’ là ảnh của d qua phép tịnh tiến theo v.

Lời giải:

a. Gọi tọa độ của A’ là (x’, y’). Theo công thức tọa độ của phép tịnh tiến, ta có:

vecto v = (-1; 2), A(3; 5); A’ = Tv.(A) => x’ = – 1 + 3 => x’ = 2

y’ = 2 + 5 => y’ = 7 => A’(2, 7)

Tương tự, ta tính được B’(-2 ; 3).

b. Gọi tọa độ của C là (x; y). A(3; 5) là ảnh của C qua phép tịnh tiến theo vectơ

c. Vì d’ = Tv.(d) nên d’ // d, do đó để viết phương trình của d’, ta tìm một điểm M ∈ d và ảnh M’ của nó qua phép tịnh tiến theo vectơ v→ và sau đó viết phương trình đường thẳng đi qua M’ và song song với d. 

Trong phương trình x – 2y + 3 = 0, cho y = 0 thì x = – 3. Vậy ta được điểm M(-3; 0) thuộc d.

Đường thẳng d có phương trình: x – 2y + 3 = 0

Đường thẳng d’ song song với d có phương trình x – 2y + m =0, d’ đi qua M’ nên:

(-4) – 2.2 + m = 0 <=> m = 8.

Vậy phương trình của d’ là: x – 2y + 8 = 0

III. Bài tập vận dụng

Bài 1 Cho hai đường thẳng a và b song song với nhau. Hãy chỉ ra một phép tịnh tiến biến a thành b. Có bao nhiêu phép tịnh tiến như thế?

Bài 2 Trong mặt phẳng tọa độ, phép tịnh tiến theo vectov→(1;0) biến đường thẳng d: x – 1 = 0 thành đường thẳng d’ có phương trình?

Bài 3 Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(3;1) biến đường thẳng d: 12x – 36y + 101 = 0 thành đường thẳng d’ có phương trình?

Bài 4 Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(-3;-2) biến đường tròn có phương trình (C): x2 + (y – 1)2 = 1 thành đường tròn (C’) có phương trình?

Bài 5 Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào là một phép biến hình?

Bài 6 Cho tam giác ABC có G là trọng tâm. Xác định ảnh của tam giác ABC qua phép tịnh tiến theo vectơ AG biến D thành A . 

Bài 7 Cho hai đường thẳng a và b song song với nhau. Hãy chỉ ra một phép tịnh tiến biến a thành b. Có bao nhiêu phép tịnh tiến như thế?

Bài 8 Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto v→ biến M thành A thì v→bằng?

Bài 9 Mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(2; -3) biến đường thẳng d: 2x + 3y – 1 = 0 thành đường thẳng d’ có phương trình

Bài 10 Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

B. Lý thuyết Phép biến hình

1. Định nghĩa.

 

– Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng.

– Nếu kí hiệu phép biến hình là F thì ta viết F(M) = M’ hay M’ = F(M) và gọi M’ là ảnh của điểm M qua phép biến hình F.

– Nếu ℋ  là một hình nào đó trong mặt phẳng thì ta kí hiệu ℋ ‘ = F(ℋ) là tập các điểm M’ = F(M), với mọi điểm M thuộc ℋ. Khi đó, ta nói F là biến hình ℋ  thành hình ℋ ‘, hay hình ℋ ‘ là ảnh của hình ℋ  qua phép biến hình F.

– Phép biến hình biến mỗi điểm M thành chính nó được gọi là phép đồng nhất.

Ví dụ 1. Cho trước đường thẳng d, với mỗi điểm M trong mặt phẳng, gọi M’ là điểm sao cho M’ đối xứng với M qua d.

Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên là một phép biến hình vì chỉ có duy nhất 1 điểm M’ thỏa mãn yêu cầu.

C. Lý thuyết Phép tịnh tiến

I. Định nghĩa.

 

– Định nghĩa: Trong mặt phẳng, cho vectơ v→. Phép biến hình biến mỗi điểm M thành điểm M’ sao cho MM‘→  =  v→ được gọi là phép tịnh tiến theo vectơ v→.

– Phép tịnh tiến theo vectơ  thường được kí hiệu là được gọi là vectơ tịnh tiến.

Vậy: Tv→ (M)=  M‘ ⇔MM‘→  =  v→.

Lý thuyết Phép tịnh tiến chi tiết – Toán lớp 11 (ảnh 1)

– Phép tịnh tiến theo vectơ – không chính là phép đồng nhất.

– Ví dụ 1. Cho hình vẽ sau:

Lý thuyết Phép tịnh tiến chi tiết – Toán lớp 11 (ảnh 1)

Ta có: Tv→ (A)=  A‘ ;   Tv→ (B)=  B‘ ;  Tv→ (C)=  C‘ .

II. Tính chất

– Tính chất 1.  Nếu Tv→ (M)=  M‘ ;  Tv→ (N)=  N‘ thì M‘N‘ →  =  MN→ và từ đó suy ra M’N’ = MN.

 

Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì.

– Tính chất 2. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

Lý thuyết Phép tịnh tiến chi tiết – Toán lớp 11 (ảnh 1)

III. Biểu thức tọa độ.

Trong mặt phẳng tọa độ Oxy cho vectơ v→ (a ;  b). Với mỗi điểm M(x ; y) ta có M’(x’ ; y’) là ảnh của điểm M qua tịnh tiến theo vectơ v→.

Khi đó:  

MM‘→  =  v→  ⇔x‘−x =ay‘  − y=b ⇒x‘=x +ay‘  = y+b

đây chính là biểu thức tọa độ của phép tịnh tiến Tv→.

Ví dụ 2. Trong mặt phẳng tọa độ Oxy, cho điểm A(1 ; – 2). Phép tịnh tiến theo vectơ biến A thành điểm A’ có tọa độ là bao nhiêu?

Lời giải:

Gọi tọa độ điểm A’ = (x’; y’).

Lý thuyết Phép tịnh tiến chi tiết – Toán lớp 11 (ảnh 1)

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Mở đầu về cân bằng hoá học (Cánh diều 2023) hay, chi tiết | Hóa học 11

Next post

Giải Lịch Sử 11 Bài 1: Nhật Bản

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán