Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

50 Bài tập Phương trình lượng giác cơ bản (có đáp án) – Toán 11

By admin 09/10/2023 0

Bài tập Toán 11 Chương 1 Bài 2 :Phương trình lượng giác cơ bản

A. Bài tập Phương trình lượng giác cơ bản

I. Bài tập trắc nghiệm

Bài 1: Phương trình cos23x = 1 có nghiệm là:

A. x = kπ, k ∈ Z.     

B. x =kπ2, k ∈ Z.

C. x =kπ3, k ∈ Z.     

D. x =kπ4, k ∈ Z.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Bài 2: Phương trình tan( x – π4) = 0 có nghiệm là:

A. x = π4 + kπ, k ∈ Z.     

B. x = 3π4 + kπ, k ∈ Z.

C. x = kπ, k ∈ Z.     

D. x = k2π, k ∈ Z.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Bài 3: Phương trình cot( x + π4) = 0 có nghiệm là:

A. x = – π4 + kπ, k ∈ Z.     

B. x = π4 + kπ, k ∈ Z.

C. x = – π4 + k2π, k ∈ Z.     

D. x = π4 + k2π, k ∈ Z.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 4: Trong [0;π],phương trình sinx = 1 – cos2x có tập nghiệm là:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 5: Trong [0;2 π), phương trình cos2x + sinx = 0 có tập nghiệm là:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 6: Trong [0;2 π), phương trình sin2x + sinx = 0 có số nghiệm là:

A. 1      

B. 2

C. 3      

D. 4

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 7: Phương trình sinx + 3cosx = 1 có số nghiệm thuộc (0;3π) là:

A. 2      

B. 3

C. 4      

D. 6

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 8: Phương trình 2cos(x + π3) = 1 có mấy họ nghiệm?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

A. 0      

B. 2

C. 1      

D. 3

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 9: Số nghiệm của phương trình sin(x +π4) = 1 thuộc [0;3π] là:

A. 1      

B. 0

C. 2      

D. 3

Lời giải:

Bài 10: Phương trình sinx = cosx có số nghiệm thuộc đoạn [0;π] là:

A. 1

B. 4

C. 5

D. 2

Lời giải:

Ta có sinx = cosx ⇒ sinx = sin(π2 – x)

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Do x ∈ [0;π] nên k = 0. Vậy chỉ có 1 nghiệm của phương trình thuộc [0;π].

Chọn đáp án A

II. Bài tập tự luận có giải

Bài 1: Phương trình sin2x = 1 có nghiệm là?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 2: Phương trình sin2 x3 = 1 có nghiệm là?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Bài 3 Phương trình 2cosx – 3 = 0 có tập nghiệm trong khoảng (0;2π) là?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 4 Phương trình sin(πcos2x) = 1 có nghiệm là?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 5 Phương trình cosx2 = – 1 có nghiệm là?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 6: Giải các phương trình sau:

a)\sin(x+2)=\frac{1}{3}

b)\sin3x=1

c)\sin(\frac{2x}{3}-\frac{\pi}{3})=0

d)\sin(2x+ 20^{\circ} )=\frac{(-\sqrt{3})}{2}

Lời giải:

a)\sin(x+2)=\frac{1}{3}

Giải bài tập trang 28, 29 SGK Giải tích 11

b) sin3x = 1 ⇔ 3x = π2 + k2π

⇔ x = π6 + k(2π3), (k ∈ Z).

c)\sin(\frac{2x}{3}-\frac{\pi}{3})=0

\Leftrightarrow \frac{2x}{3}-\frac{\pi}{3}=k\pi\ \Rightarrow \ x\ =\ \frac{\pi}{2}\ +\frac{3\pi}{2}k

(k ∈ Z).

d) Vì –32 = sin(-600) nên phương trình đã cho tương đương với sin (2x + 200) = sin(-600)

⇔Giải bài tập trang 28, 29 SGK Giải tích 11

Bài 7 Với những giá trị nào của x thì giá trị của các hàm số y = sin3x và y = sinx bằng nhau?

x thỏa mãn yêu cầu bài ra khi và chỉ khi

Giải bài tập trang 28, 29 SGK Giải tích 11

Bài 8 Giải các phương trình sau:

a) cos(x – 1) = 23

b) cos3x = cos120

c) cos(3x2 – π4) = –12

d) cos22x = 14

Lời giải:

a) cos(x – 1) = 23 ⇔ x – 1 = ±arccos23 + k2π

⇔ x = 1 ± arccos23 + k2π, (k ∈Z)

b) cos3x = cos120 ⇔ 3x = ±120 + k3600 ⇔ x = ±40 + k1200, (k ∈ Z).

c) Vì –12 = cos2π3 nên cos(3x2 – π4) = –12 ⇔ cos(3x2 – π4) = cos23 ⇔ 3x2 – π4 = ±2π3 + k2π ⇔ x = 23(π4 + 2π3) + 4kπ3

Giải bài tập trang 28, 29 SGK Giải tích 11

d) Sử dụng công thức hạ bậc Giải bài tập trang 28, 29 SGK Giải tích 11 (suy ra trực tiếp từ công thức nhan đôi) ta có

cos22x = 14 ⇔ 1 + cos4x2 = 14 ⇔ cos4x = –12

⇔ 4x = ±2π3 + 2kπ ⇔ x = ±π6 + kπ2, (k ∈ Z)

Bài 9 Giải phương trình Giải bài tập trang 28, 29 SGK Giải tích 11

Giải bài tập trang 28, 29 SGK Giải tích 11

⇔ sin2x = -1 ⇔ 2x = –π2 + k2π ⇔ x = –π4 + kπ, (k ∈ Z).

Bài 10 Giải các phương trình sau:

a) tan(x – 150) = 33 b) cot(3x – 1) = –3

c) cos2x . tanx = 0 d) sin3x . cotx = 0

Lời giải:

a) Vì Giải bài tập trang 28, 29 SGK Giải tích 11= tan300 nên tan(x – 150) = Giải bài tập trang 28, 29 SGK Giải tích 11 ⇔ tan(x – 150) = tan300 ⇔ x – 150 = 300 + k1800 ⇔ x = 450 + k1800, (k ∈ Z).

b) Vì –3 = cot(-π6) nên cot(3x – 1) = –3 ⇔ cot(3x – 1) = cot(-π6)

⇔ 3x – 1 = –π6 + kπ ⇔ x = –π18 + 13 + k(π3), (k ∈ Z)

c) Đặt t = tan x thì cos2x = Giải bài tập trang 28, 29 SGK Giải tích 11 , phương trình đã cho trở thành
Giải bài tập trang 28, 29 SGK Giải tích 11. t = 0 ⇔ t ∈ {0; 1; -1} .

Vì vậy phương trình đã cho tương đương với

Giải bài tập trang 28, 29 SGK Giải tích 11

d) sin3x . cotx = 0

⇔ Giải bài tập trang 28, 29 SGK Giải tích 11Với điều kiện sinx # 0, phương trình tương đương với

sin3x . cosx = 0 ⇔ sin3x = 0; cos3x = 0

Với cosx = 0 ⇔ x = π2 + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.

Với sin3x = 0 ⇔ 3x = kπ ⇔ x = k(π3), (k ∈ Z). Ta còn phải tìm các k nguyên để x = k(π3) vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sink(π3) = 0, giải phương trình này (với ẩn k nguyên), ta có sink(π3) = 0 ⇔ k(π3)= lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.

Do đó phương trình đã cho có nghiệm là x = π2 + kπ, (k ∈Z) và x = k(π3) (với k nguyên không chia hết cho 3).

Nhận xét: Các em hãy suy nghĩ và giải thích tại sao trong các phần a, b, c không phải đặt điều kiện có nghĩa và cũng không phải tìm nghiệm ngoại lai.

III. Bài tập vận dụng 

Bài 1 Giải các phương trình sau

a) sin⁡(x+2)=13.

b) sin⁡3x=1.

c) sin⁡(2x3−π3)=0

d) sin⁡(2x+200)=−32.

Bài 2 Với những giá trị nào của x thì giá trị của các hàm số y = sin3x và y = sin x bằng nhau?

Bài 3 Giải các phương trình sau:

a) cos⁡(x−1)=23.

b) cos⁡3x=cos⁡120.

c). cos⁡(3x2−π4)=−12.

d) cos2⁡2x=14.

Bài 4 Giải phương trình 2cos2x1–sin2x=0

Bài 5 Giải các phương trình sau

a) tan⁡(x−150)=33.

b) cot⁡(3x−1)=−3.

Bài 6 Giải các phương trình sau

a) cos⁡2x.tanx=0.

b) sin⁡3x.cot⁡x=0.

Bài 7 Giải các phương trình sau

a) tan⁡(x−150)=33.

b) cot⁡(3x−1)=−3

Bài 8 Giải các phương trình sau

a) cos⁡2x.tanx=0.

b) sin⁡3x.cot⁡x=0.

Bài 9 Giải các phương trình sau

a) sin⁡3x−cos⁡5x=0.

b) tan⁡3x.tan⁡x=1.

Bài 10 Giải các phương trình sau:

a) sin3x – cos5x = 0 b) tan3x . tanx = 1.

B. Lý thuyết Phương trình lượng giác cơ bản

I. Định nghĩa

1. Phương trình sinx = a.

Xét phương trình sinx = a (1)

– Trường hợp |a| > 1

Phương trình (1) vô nghiệm vì |sinx| ≤ 1 với mọi x.

– Trường hợp |a| ≤ 1

Gọi α là số đo bằng radian của một cung lượng giác. Khi đó, phương trình sinx = a có các nghiệm là:

Lý thuyết Phương trình lượng giác cơ bản chi tiết – Toán lớp 11 (ảnh 1)

Nếu số thực α thỏa mãn điều kiện: −π2 ≤α≤π2sin α  =a thì ta viết α = arcsina (đọc là ac-sin-a; nghĩa là cung có sin bằng a). Khi đó, các nghiệm của phương trình sinx = a được viết là:

Lý thuyết Phương trình lượng giác cơ bản chi tiết – Toán lớp 11 (ảnh 1)

– Chú ý:

a) Phương trình sinx = sinα; với α là một số cho trước, có các nghiệm là:

x  =  α  +​  k2π và x  =π−   α  +​  k2π  ;  k∈ℤ

Tổng quát: 

Lý thuyết Phương trình lượng giác cơ bản chi tiết – Toán lớp 11 (ảnh 1)

b) Phương trình sinx = sinβ0 có các nghiệm là:

Lý thuyết Phương trình lượng giác cơ bản chi tiết – Toán lớp 11 (ảnh 1)

c) Trong một công thức về nghiệm của phương trình lương giác không được dùng đồng thời hai đơn vị độ và radian.

d) Các trường hợp đặc biệt:

+ Khi a = 1: Phương trình sinx = 1 có các nghiệm là x  =  π2  +​  k2π;  k∈ℤ.

+ Khi a = – 1: Phương trình sinx = – 1 có các nghiệm là x  =  −π2  +​  k2π;  k∈ℤ.

+ Khi a = 0:  Phương trình sinx = 0 có các nghiệm là x  =  kπ;  k∈ℤ.

2. Phương trình cosx = a.

– Trường hợp |a| > 1

Phương trình cosx = a vô nghiệm vì cosx   ≤1 với mọi x.

– Trường hợp  a   ≤1.

Gọi α là số đo radian của một cung lượng giác. Khi đó, phương trình cosx = a có các nghiệm là: x  =  ±α  +  k2π;  k∈ℤ

– Chú ý:

a) Phương trình cosx = cosα, với α là một số cho trước, có các nghiệm là: Lý thuyết Phương trình lượng giác cơ bản chi tiết – Toán lớp 11 (ảnh 1)

b) Phương trình cos x= cosβ0 có các nghiệm là x =  ±β0  +​ k3600;  k∈ℤ

c) Nếu số thực α thỏa mãn điều kiện: 0≤α ≤πcosα  =a thì ta viết α = arccosa (đọc là ac – cosin- a, có nghĩa là cung có cosin bằng a). Khi đó, các nghiệm của phương trình cos x = a còn được viết là:

x =  ±  arccosa​ +  k2π  ;  k∈ℤ

d) Các trường hợp đặc biệt:

+ Khi a = 1; phương trình cosx = 1 có các nghiệm là: x  =  k2π;  k∈ℤ.

+ Khi a = – 1; phương trình cosx = – 1 có các nghiệm là: x  = π+  k2π;  k∈ℤ

+ Khi a = 0; phương trình cosx = 0 có các nghiệm là: x  =π2 +​  kπ;  k∈ℤ.

3. Phương trình tanx = a.

– Điều kiện xác định của phương trình là x ≠π2 +  kπ;  k∈ℤ.

Kí hiệu x = arctana (đọc là ac– tang– a; nghĩa là cung có tang bằng a). Khi đó, nghiệm của phương trình tanx = a là: x = arctana+​ kπ;  k∈ℤ

– Chú ý:

a) Phương trình tanx = tanα, với α là một số cho trước, có các nghiệm là:

x =α+​ kπ;  k∈ℤ

Tổng quát; tan f(x) = tan g(x) ⇒f(x)​  =g(x) +​ kπ;  k∈ℤ.

b) Phương trình tanx = tanβ0 có các nghiệm là: x =  β0  +k.1800;  k ∈ℤ.

4. Phương trình cotx = a

Điều kiện xác định của phương trình x ≠  kπ  ;  k ∈ℤ.

Kí hiệu x = arccota (đọc là ac– côtang – a; nghĩa là cung có côtang bằng a). Khi đó, nghiệm của phương trình cotx = a là: x = arccota+​ kπ;  k∈ℤ

– Chú ý:

a) Phương trình cotx = cotα, với α là một số cho trước, có các nghiệm là:

x =α+​ kπ;  k∈ℤ

Tổng quát; cot f(x) = cot g(x) ⇒f(x)​  =g(x) +​ kπ;  k∈ℤ.

b) Phương trình cot x = cot β0 có các nghiệm là: x =  β0  +k.1800;  k ∈ℤ

– Ghi nhớ:

Mỗi phương trình sinx = a (|a| ≤ 1); cosx = a (|a| ≤ 1), tanx = a; cotx = a có vô số nghiệm.

Giải các phương trình trên là tìm tất cả các nghiệm của chúng.

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SBT Hóa 11 Bài 13 (Kết nối tri thức): Cấu tạo hoá học hợp chất hữu cơ

Next post

Bài giảng điện tử Lịch sử 11 Bài 10 (Kết nối tri thức): Cuộc cải cách của Lê Thánh Tông (thế kỉ XV) | Giáo án PPT Lịch sử 11

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán