Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Chuyên đề Phép đối xứng trục 2023 hay, chọn lọc

By admin 10/10/2023 0

Chuyên đề Phép đối xứng trục

Phần 1: Dạng bài Tính chất đối xứng trục hay, chi tiết

A. Phương pháp giải

[1]. Định nghĩa phép đối xứng trục.

Dạng bài Tính chất đối xứng trục hay, chi tiết

Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành M’sao cho d là đường trung trực của đoạn thẳng MM’được gọi là phép đối xứng qua đường thẳng d hay phép đối xứng trục d.

Đường thẳng d được gọi là trục của phép đối xứng hoặc đơn giản gọi là trục đối xứng.

Phép đối xứng trục d thường được kí hiệu là Dd.

Đường thẳng d được gọi là trục của phép đối xứng hoặc đơn giản gọi là trục đối xứng.

Phép đối xứng trục d thường được kí hiệu là Dd.

Nếu hình H’ là ảnh của hình H qua phép đối xứng trục d thì ta còn nói H đối xứng với H’ qua d, hay H và H’ đối xứng với nhau qua d.

Nhận xét:

• Cho đường thẳng d. Với mỗi điểm M, gọi M0 là hình chiếu vuông góc của M trên đường thẳng d. Khi đó Dạng bài Tính chất đối xứng trục hay, chi tiết

• Dạng bài Tính chất đối xứng trục hay, chi tiết

[2]. Tính chất

Tính chất 1

Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.

Tính chất 2

Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

Dạng bài Tính chất đối xứng trục hay, chi tiết

[3].Trục đối xứng của một hình

Định nghĩa

Đường thẳng d gọi là trục đối xứng của hình H nếu phép đối xứng qua d biến hình H thành chính nó.

Khi đó ta nói H là hình có trục đối xứng.

B. Ví dụ minh họa

Ví dụ 1: Cho góc nhọn xOy và điểm A thuộc miền trong của góc đó, điểm B thuộc cạnh Ox (B khác O). Tìm C thuộc Oy sao cho chu vi tam giác ABC nhỏ nhất?

Hướng dẫn giải:

Dạng bài Tính chất đối xứng trục hay, chi tiết

Gọi M là điểm đối xứng với A qua Ox. Vì B ∈ Ox nên suy ra BA = BM.

Gọi N là điểm đối xứng với A qua Oy Vì C ∈ Oy nên suy ra CA = CN.

Chu vi tam giác: PΔABC = AB + BC + CA = BM + BC + CN. (*)

Theo bất đẳng thức tam giác mở rộng, ta có

MB + BC ≥ MC và MC + CN ≥ MN.

Kết hợp với (*), suy ra

PΔABC = (MB + BC) + CN ≥ MC + CN ≥ MN.

Dấu “=” xảy ra khi và chỉ khi B, C, M, N thẳng hàng hay C là giao điểm của BM với trục Oy.

Ví dụ 2: Cho đường thẳng d và hai điểm A,B nằm cùng phía với d. Tìm điểm M trên d sao cho MA+MB đạt giá trị nhỏ nhất ?

Hướng dẫn giải:

– Tìm điểm A’ đối xứng với A qua d

– Nối A’B cắt d tại M. M chính là điểm cần tìm.

– Thật vậy: Vì A’ đối xứng với A qua d cho nên MA = MA’ (1). Do đó: MA + MB = MA’ + MB = A’B .

– Giả sử tồn tại M’ khác M thuộc d thì: M’A + M’B = M’A’ + M’B ≥ A’B. Dấu bằng chỉ xảy ra khi A’; M’; B thẳng hàng. Nghĩa là M trùng với M’.

Ví dụ 3: Cho đường thẳng d và hai điểm A,B (nằm về hai phía của d). Tìm điểm M trên d sao cho |MA – MB| đạt GTLN .

Hướng dẫn giải:

– Gọi A’ là điểm đối xứng với A qua d

– Nối A’B cắt d tại M. M chính là điểm cần tìm.

– Thật vậy: |MA – MB| = |MA’ – MB| = A’B.

Giả sử tồn tại một điểm M’ khác với M trên d, khi đó: |M’A – M’B| = |M’A’ – M’B| ≤ A’B. Dấu bằng chỉ xảy ra khi M’; A’; B thẳng hàng, nghĩa là M trùng với M’.

Phần 2: Tìm ảnh của một điểm qua phép đối xứng trục cực hay

A. Phương pháp giải

Biểu thức tọa độ:

Trong hệ trục tọa độ Oxy

Tìm ảnh của một điểm qua phép đối xứng trục cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho điểm M(2;3). Tìm ảnh của điểm M qua phép đối xứng trục Ox.

Hướng dẫn giải:

Biểu thức tọa độ qua phép đối xứng trục Ox:

Với mỗi M(x;y) gọi M’ = DOx(M) = (x’;y’) thì Tìm ảnh của một điểm qua phép đối xứng trục cực hay

Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho điểm A(3;5). Tìm ảnh của điểm M qua phép đối xứng trục Ox.

Hướng dẫn giải:

Ta có: Tìm ảnh của một điểm qua phép đối xứng trục cực hay

Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho phép đối xứng trục Đa, với a là đường thẳng có phương trình: 2x – y = 0. Lấy A(2;2); tìm ảnh của A qua phép đối xứng trục a.

Hướng dẫn giải:

Tìm ảnh của một điểm qua phép đối xứng trục cực hay

Tìm ảnh của một điểm qua phép đối xứng trục cực hay

Phần 3: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

A. Phương pháp giải

Cách 1. Sử dụng tính chất của phép đối xứng trục

Cách 2. Sử dụng biểu thức tọa độ đối với phép đối xứng qua trục Ox hoặc Oy

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x + y – 3 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng trục Ox.

Hướng dẫn giải:

Trục Ox có phương trình y = 0.

• Tọa độ giao điểm A của d và Ox là nghiệm của hệ Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Vì A ∈ Ox nên qua phép đối xứng trục Ox biến thành chính nó, tức A’≡A(3;0).

Chọn điểm Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi đường thẳng d’ là ảnh của d qua phép đối xứng trục Ox khi đó d’ đi qua hai điểm A'(3;0) và B'(1;-2)

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 7x + y – 3 = 0. Tìm ảnh của Δ qua phép đối xứng trục Oy.

Hướng dẫn giải:

(Sử dụng biểu thức tọa độ)

Biểu thức tọa độ qua phép đối xứng trục tung là Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Thay vào Δ, ta được 7(-x’) + y’ – 3 = 0 hay 7x’ – y’ + 3 = 0.

Vậy ảnh của Δlà: Δ’: 7x – y + 3 = 0

Ví dụ 3: Cho đường thẳng (d) có phương trình x + y-7 = 0 và đường thẳng (Δ) có phương trình 2x – y – 2 = 0. Phương trình đường thẳng (d’) là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ) là

Hướng dẫn giải:

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi M = (d)∩(Δ) khi đó tọa độ của M là nghiệm của hệ: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Lấy N(1;6) ∈ (d).

• Gọi (d1) là đường thẳng qua N và vuông góc với (Δ), khi đó: (d1): x + 2y + c = 0

N(1;6) ∈ (d1) ⇒ 1 + 2.6 + c = 0 ⇒ c = -13 ⇒ (d1): x + 2y – 13 = 0

• Gọi I = (d1)∩(Δ) khi đó tọa độ của I là nghiệm của hệ: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi N’ là ảnh của N qua phép đối xứng trục (Δ) ⇒ I là trung điểm của NN’ nên suy ra: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• (d’) là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ)

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Phần 4: Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

A. Phương pháp giải

Phép đối xứng trục biến một đường tròn thành đường tròn có cùng bán kính

Cách 1.

Bước 1: Tìm ảnh I’ của âm I là tâm của đường tròn (C) qua phép đối xứng trục.

Bước 2: Viết phương trình đường tròn (C’) với tâm I’ và bán kính R’ = R.

Cách 2. Sử dụng biểu thức tọa độ với trường hợp trục đối xứng là Ox hoặc Oy

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x – 3)2 + (y + 5)2 = 36. Viết phương trình đường tròn (C’) là ảnh của (C) qua phép đối xứng trục Ox

Hướng dẫn giải:

Cách 1. Đường tròn (C) có tâm I(3;-5) và bán kính R = 6

Ta có Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

Do đó (C’) có phương trình (x – 3)2 + (y – 5)2 = 36.

Cách 2. Biểu thức tọa độ qua phép đối xứng trục Ox là Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

Thay vào (C), ta được (x’ – 3)2 + (-y’ + 5)2 = 36 hay (x’ – 3)2 + (y’ – 5)2 =36.

Vậy (C’) có phương trình (x – 3)2 + (y – 5)2 = 36.

Ví dụ 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn(C): (x – 2)2 + (y + 5)2 = 16. Viết phương trình đường tròn (C’)là ảnh của đường tròn (C) qua phép đối xứng trục Oy.

Hướng dẫn giải:

Đường tròn có tâm I(2;-5); bán kính R = 4.

Ảnh của tâm I(2;-5) qua trục Oylà I'(-2;-5).

Do đó ảnh của đường tròn qua trục Oylà (C’): (x + 2)2 + (y + 5)2 = 16.

Ví dụ 3: Cho đường tròn (C): x2 + y2 -4x + 2y + 1 = 0 và đường thẳng d: 2x – y + 2 = 0. Hãy viết phương trình của đường tròn (C’) là ảnh của (C) qua phép đối xứng trục d.

Hướng dẫn giải:

Đường tròn (C) có tâm I(2;-1) và bán kính R = 2.

Gọi Hlà hình chiếu vuông góc của I lên d ⇒ IH ⊥ d ⇒ IH: x + 2y + c = 0.

I(2;-1) ∈ IH ⇒ 2 + 2.(-1) + c = 0 ⇒ c = 0 ⇒ IH: x + 2y = 0.

Gọi H=Δ∩d khi đó H là nghiệm của hệ:

 Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

– Gọi I’(x;y) là tâm của (C’).Khi đó H là trung điểm của II’ Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

– Vậy (C’): Tìm ảnh của một đường tròn qua phép đối xứng trục cực hay

Tìm ảnh của điểm, đường thẳng qua phép đối xứng trục, đối xứng tâm bằng phương pháp tọa độ

I. Phương pháp:

1.  Xác định ảnh của một điểm qua phép đối xứng trục, đối xứng tâm.

– Sử dụng biểu thức tọa độ.

2.  Xác định ảnh  của đường thẳng  qua hình qua phép đối xứng trục, đối xứng tâm.

Cách 1: Chọn hai điểm A,B phân biệt trên , xác định ảnh tương ứng qua phép đối xứng trục, đối xứng tâm. Đường thẳng   cần tìm là đường thẳng qua hai ảnh .

Cách 2:

Dựa vào vị trí tương đối của đường thẳng  và trục đối xứng để tìm ảnh  .

Áp dụng tính chất phép đối xứng tâm biến đường thẳng  thành đường thẳng  song song hoặc trùng với nó.

Cách 3: Sử dụng quỹ tích

Với mọi điểm  qua phép đối xứng trục hoặc đối xứng tâm sẽ biến  thành  .

Từ biểu thức tọa độ rút  thế vào phương trình đường thẳng  ta được phương trình đường thẳng ảnh  .

3.  Xác định ảnh của một hình H (đường tròn, elips, parabol..)

Sử dụng quỹ tích: với mọi điểm thuộc hình H, qua phép đối xứng trục hoặc đối xứng tâm sẽ biến  thành thì   thuộc ảnh H’ của hình H.

Với đường tròn áp dụng tính chất phép đối xứng trục hoặc đối xứng tâm biến đường tròn thành đường tròn có cùng bán kính hoặc sử dụng quỹ tích.

II. Ví dụ

Ví dụ 1.  Trong mặt phẳng tọa độ Oxy, cho phép biến hình  .

Chọn mệnh đề đúng:

A. F là phép đối xứng trục Oy.

B. F là phép đối xứng trục Ox.

C. F là phép đối xứng với trục đối xứng là đường phân giác của góc phần tư thứ nhất.

D.  F là phép đối xứng trục với trục là đường phân giác của góc phần tư thứ hai.

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Hóa học 11 Bài 3 (Cánh diều 2023): pH của dung dịch. Chuẩn độ Acid – base

Next post

Giải Lịch Sử 11 Bài 2: Ấn Độ

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán