Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

By admin 09/10/2023 0

Giải bài tập Toán lớp 11 Bài 1: Dãy số

Hoạt động khởi động trang 45 Toán 11 Tập 1:

Hoạt động khởi động trang 45 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Gọi u1; u2; u3; …; un lần lượt là diện tích các tình huống có độ dài cạnh là 1; 2; 3; …; n. Tính u3 và u4.

Lời giải:

u3 và u4 lần lượt là diện tích của các hình vuông có cạnh bằng 3 và 4. Do đó ta có:

u3 = 32 = 9; u4 = 42 = 16.

1. Dãy số là gì?

Hoạt động khám phá 1 trang 45 Toán 11 Tập 1: Cho hàm số:

u: N* → R

n ↦ u(n) = n2.

Tính u(1), u(2), u(50), u(100).

Lời giải:

Ta có:

u(1) = 12 = 1;

u(2) = 22 = 4;

u(50) = 502 = 2 500;

u(100) = 1002 = 10 000.

Hoạt động khám phá 2 trang 46 Toán 11 Tập 1: Cho hàm số:

v: {1;2;3;4;5} →R

n ↦v(n) = 2n.

Tính v(1), v(2), v(3), v(4), v(5).

Lời giải:

Ta có:

v(1) = 2.1 = 2;

v(2) = 2.2 = 4;

v(3) = 2.3 = 6;

v(4) = 2.4 = 8;

v(5) = 2.5 = 10.

Thực hành 1 trang 46 Toán 11 Tập 1: Cho dãy số:

u: N* → R

n ↦ un = n3.

a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.

b) Viết năm số hạng đầu tiên của dãy số đã cho.

Lời giải:

a) Dãy số trên là dãy số vô hạn.

b) Năm số hạng đầu tiên của dãy số đã cho là:

u(1) = 13 = 1;

u(2) = 23 = 8;

u(3) = 33 = 27;

u(4) = 43 = 64;

u(5) = 53 = 125.

Vận dụng 1 trang 46 Toán 11 Tập 1: Cho 5 hình tròn theo thứ tự có bán kính 1; 2; 3; 4; 5.

a) Viết dãy số chỉ diện tích của 5 hình tròn này.

b) Tìm số hạng đầu và số hạng cuối của dãy số trên.

Lời giải:

a) Dãy số chỉ diện tích của 5 hình tròn này là:

v: {1;2;3;4;5} →R

n ↦ v(n) = πn2.

b) Số hạng đầu của dãy số là: v(1) = π.12 = π.

Số hạng cuối của dãy số là: v(5) = π.52 = 25π.

2. Cách xác định dãy số

Hoạt động khám phá 3 trang 46 Toán 11 Tập 1: Cho các dãy số (an), (bn), (cn), (dn) được xác định như sau:

+) a1 = 0; a2 = 1; a3 = 2; a4 = 3; a5 = 4.

+) bn = 2n.

+) Hoạt động khám phá 3 trang 46 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) dn là chu vi của đường tròn có bán kính n.

Tính bốn số hạng đầu tiên của các dãy số trên.

Lời giải:

+) Bốn số hạng đầu của dãy (an­) là: a1 = 0; a2 = 1; a3 = 2; a4 = 3.

+) Bốn số hạng đầu của dãy (bn­) là:

b1 = 2.1 = 2;

b2 = 2.2 = 4;

b3 = 2.3 = 6;

b4 = 2.4 = 8.

+) Bốn số hạng đầu của dãy (Cn­) là:

c1 = 1;

c2 = c1 + 1 = 1 + 1 = 2;

c3 = c2 + 1 = 2 + 1 = 3;

c4 = c3 + 1 = 3 + 1 = 4.

+) dn là chu vi của đường tròn có bán kính n được xác định bởi công thức: dn = 2πn.

Khi đó bốn số hạng đầu của dãy (dn­) là:

d1 = 2π.1 = 2π;

d2 = 2π.2 = 4π;

d3 = 2π.3 = 6π;

d4 = 2π.4 = 8π.

Thực hành 2 trang 47 Toán 11 Tập 1: Cho dãy số (un) xác định bởi: Thực hành 2 trang 47 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Chứng minh u2 = 2.3; u3 = 22.3; u4 = 23.3.

b) Dự đoán công thức số hạng tổng quát của dãy số (un).

Lời giải:

a) Ta có:

n = 2 ≥ 1 nên u2 = 2.u1 = 2.3.

n = 3 ≥ 1 nên u3 = 2.u2 = 2.(2.3) = 22. 3.

n = 4 ≥ 1 nên u4 = 2.u3 = 2.(22.3) = 23. 3.

b) Dự đoán công thức tổng quát của dãy số (un) là un = 2n – 1.3.

Vận dụng 2 trang 47 Toán 11 Tập 1: Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột dỗ (Hình 1). Gọi un là số cột gỗ nằm ở lớp thứ n tính từ trên xuống và cho biết lớp trên cùng có 14 cột gỗ. Hãy xác định dãy số (un) bằng hai cách:

a) Viết công thức số hạng tổng quát un.

b) Viết hệ thức truy hồi.

Vận dụng 2 trang 47 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Ta có u1 = 14, khi đó:

u2 = 14 + 1 = 15;

u3 = 15 + 1 = 14 + 2.1;

u4 = 14 + 3.1

Khi đó công thức tổng quát của dãy số (u­n) là: un = 14 + (n – 1).1.

b) Hệ thức truy hồi của dãy số (un) là: Vận dụng 2 trang 47 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

3. Dãy số tăng, dãy số giảm

Hoạt động khám phá 4 trang 48 Toán 11 Tập 1: Cho hai dãy số (an) và (bn) được xác định như sau: an = 3n + 1, bn = – 5n.

a) So sánh an và an + 1, ∀n ∈ ℕ*.

b) So sánh bn và bn + 1, ∀n ∈ ℕ*.

Lời giải:

a) Ta có: an = 3n + 1, an + 1 = 3(n + 1) + 1 = 3n + 4

Vì n ∈ ℕ* nên 3n + 4 > 3n + 1 hay an + 1 > an.

b) Ta có: bn = – 5n, bn + 1 = – 5(n + 1) = – 5n – 5

Vì n ∈ ℕ* nên – 5n – 5 < – 5n hay bn – 1 < bn.

Thực hành 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số sau:

a) (un) với un=2n−1n+1;

b) (xn) với xn=n+24n;

c) (tn) với tn = (– 1)n . n2.

Lời giải:

a) Ta có: (un) với un+1=2n+1−1n+1+1=2n+1n+2

Xét hiệu

 un+1−un=2n+1n+2−2n−1n+1=2n2+3n+1−2n2−3n+2n+2n+1=3n+2n+1>0,∀n∈ℕ*.

Suy ra un+1 > un, ∀n ∈ ℕ*.

Vậy dãy số (un) là dãy số tăng.

b) Ta có: xn+1=n+1+24n+1=n+34.4n

Xét hiệu

 xn+1−xn=n+34.4n−n+14n=n+34.4n−4n+44.4n=−3n−14.4n<0,∀n∈ℕ*.

Suy ra xn+1 < xn, ∀n ∈ ℕ*.

Vậy dãy số (xn) là dãy số giảm.

c) Ta có: tn+1 = (– 1)n+1 . (n + 1)2

Xét hiệu: tn+1 – tn = (– 1)n+1 . (n + 1)2 – ( – 1)n.n2

Với n chẵn:

tn+1 – tn = 0 – (n + 1)2 – n2 < 0, ∀n ∈ ℕ*.

Suy ra tn+1 < tn, ∀n ∈ ℕ*.

Vì vậy dãy số (tn) là dãy số giảm.

Với n lẻ:

tn+1 – tn = (n + 1)2 + n2 > 0, ∀n ∈ ℕ*.

Suy ra tn+1 > tn, ∀n ∈ ℕ*.

Vì vậy dãy số (tn) là dãy số tăng.

Vận dụng 3 trang 49 Toán 11 Tập 1: Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp nhau hơn kém nhau 1 cột gỗ (Hình 2).

Vận dụng 3 trang 49 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Gọi u1 = 25 là số cột gỗ có ở hàng dưới cùng của chồng cột gỗ, un là số cột gỗ có ở hàng thứ n tính từ dưới lên trên. Xét tính tăng, giảm của dãy số này.

b) Gọi vt = 14 là số cột gỗ có ở hàng trên cùng của chồng cột gỗ, vn là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới. Xét tính tăng, giảm của dãy số này.

Lời giải:

a) (un) là số cột gỗ có ở hàng thứ n tính từ dưới lên trên nên (un) là dãy số giảm.

b) (vn) là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới nên (vn) là dãy số tăng.

4. Dãy số bị chặn

Hoạt động khám phá 5 trang 49 Toán 11 Tập 1: Cho dãy số (un) với un=1n. So sánh các số hạng của dãy số với 0 và 1.

Lời giải:

Vì n ∈ ℕ* nên n > 0 do đó 1n > 0 hay un > 0.

Vì n ∈ ℕ* nên n ≥ 1 do đó 1n≤11 = 1 hay un ≤ 1.

Do đó 0 < un ≤ 1.

Thực hành 4 trang 49 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:

a) (an) với an=cosπn;

b) (bn) với bn=nn+1.

Lời giải:

a) Vì −1≤cosπn≤1 nên −1≤an≤1, ∀n ∈ ℕ*.

Do đó dãy số (an) bị chặn trên và chặn dưới.

Vì vậy dãy số (an) bị chặn.

b) Ta có: bn=nn+1=n+1−1n+1=1−1n+1

Vì n ∈ ℕ* nên 1n+1>0 nên 1−1n+1<1 hay bn < 1.

Vì n ∈ ℕ* nên nn+1>0 hay bn > 0.

Suy ra 0 < bn < 1. Do đó (bn) là dãy bị chặn trên và chặn dưới.

Vì vậy dãy số (bn) bị chặn.

Bài tập

Bài 1 trang 50 Toán 11 Tập 1: Tìm u2, u3 và dự đoán công thức số hạng tổng quát của un dãy số: Bài 1 trang 50 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có: n = 2 ≥ 1 nên u2=u11+u1=11+1=12.

n = 3 ≥ 1 nên u3=u21+u2=121+12=13.

n = 4 ≥ 1 nên u4=u31+u3=131+13=14.

n = 5 ≥ 1 nên u5=u41+u4=141+14=15.

Dự đoán công thức số hạng tổng quát un của dãy số là: un=1n,∀n∈ℕ*.

Bài 2 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=11.2+12.3+…+1nn+1. Tìm u1, u2, u3 và dự đoán công thức số hạng tổng quát của un.

Lời giải:

Ta có:

Bài 2 trang 50 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Dự đoán công thức tổng quát:

Bài 2 trang 50 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 3 trang 50 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (yn) với yn=n+1−n.

Lời giải:

Ta có: yn+1=n+1+1−n+1=n+2−n+1.

Xét hiệu

 yn+1−yn=n+2−n+1−n+1+n=n+2+n>0,∀n∈ℕ*.

Suy ra yn+1 > yn, ∀n ∈ ℕ*.

Vậy dãy số (yn) tăng.

Bài 4 trang 50 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:

a) (an) với an=sin2nπ3+cosnπ4;

b) (un) với un=6n−4n+2.

Lời giải:

a) Vì 0≤sin2nπ3≤1,∀n∈ℕ* và −1≤cosnπ4≤1,∀n∈ℕ* nên −1≤sin2nπ3+cosnπ4≤2,∀n∈ℕ*

Do đó −1≤an≤2,∀n∈ℕ*

Suy ra dãy số (an) bị chặn.

b) Ta có: un=6n–4n+2=6–16n+2

Vì n ∈ ℕ* nên n ≥ 1 do đó ta có: n + 2 ≥ 3

⇒−16n+2≥−163

⇒6−16n+2≥6−163

⇒un≥23.

Mặt khác n ∈ ℕ* nên n > 0 do đó 16n+2>0 khi đó un < 6.

Suy ra 23≤un<6 nên dãy số bị chặn trên và chặn dưới.

Vì vậy dãy số (un) bị chặn.

Bài 5 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=2n−1n+1. Chứng minh (un) là dãy số tăng và bị chặn.

Lời giải:

Ta có: un=2n−1n+1=2−3n+1

Vì n ∈ ℕ* nên n ≥ 1 do đó ta có: n + 1 ≥ 2

⇒−3n+1≥−32

⇒2−3n+1≥2−32

⇒un≥12

Mặt khác n ∈ ℕ* nên n > 0 do đó 3n+1>0 khi đó un < 2.

Suy ra 13≤un<2 nên dãy số bị chặn trên và chặn dưới.

Vì vậy dãy số (un) bị chặn.

Ta có: un+1=2n+1−1n+1+1=2n+1n+2

Xét hiệu:

un+1−un=2n+1n+2−2n−1n+1=2n2+3n+1−2n2−3n+2(n+1)(n+2)=3(n+1)(n+2)>0,∀n∈ℕ*

Suy ra un+1 > un nên dãy số (un) tăng.

Vậy dãy số (un) tăng và bị chặn.

Bài 6 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=na+2n+1. Tìm các giá trị của a để:

a) (un) là dãy số tăng;

b) (un) là dãy số giảm.

Lời giải:

Ta có: un+1=n+1a+2n+1+1=n+1a+2n+2

Xét hiệu:

un+1−un=n+1a+2n+2−na+2n+1=n+1a+2n+1n+2n+1−na+2n+2n+1n+2

=n2+2n+1a+2n+2n+2n+1−n2+2na+2n+4n+1n+2=a−2n+1n+2

Vì n ∈ ℕ* nên (n + 1)(n + 2) > 0 nên dấu của hiệu un+1 – un phụ thuộc vào dấu của biểu thức a – 2.

a) Để (un) là dãy số tăng thì un+1 – un > 0 nên a – 2 > 0 ⇔ a > 2.

b) Để (un) là dãy số giảm thì un+1 – un < 0 nên a – 2 < 0 ⇔ a < 2.

Bài 7 trang 50 Toán 11 Tập 1: Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đó từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?

Bài 7 trang 50 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Bài 7 trang 50 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Độ dài cạnh của hình vuông số 1 là: 1;

Độ dài cạnh của hình vuông số 2 là: 1;

Độ dài cạnh của hình vuông số 3 là: 2;

Độ dài cạnh của hình vuông số 4 là: 3;

Độ dài cạnh của hình vuông số 5 là: 5;

Độ dài cạnh của hình vuông số 6 là: 8;

Độ dài cạnh của hình vuông số 7 là: 13;

Độ dài cạnh của hình vuông số 8 là: 21.

Ta có dãy số: 1; 1; 2; 3; 5; 8; 13; 21.

Nhận xét: Dãy số trên có đặc điểm là:

Trong ba số hạng liên tiếp, số hạng thứ ba bằng tổng hai số hạng đầu.

Video bài giảng Toán 11 Bài 1: Dãy số – Chân trời sáng tạo

Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bố cục bài Sống, hay không sống – đó là vấn đề chuẩn nhất – Kết nối tri thức

Next post

Văn bản Sống, hay không sống – đó là vấn đề – William Shakespeare – Nội dung, tác giả, tác phẩm – Kết nối tri thức

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán