Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác

By admin 09/10/2023 0

Giải bài tập Toán lớp 11 Bài 3: Các công thức lượng giác

Giải Toán 11 trang 20 Tập 1

Hoạt động khởi động trang 20 Toán 11 Tập 1: Trong kiến trúc, các vòm cổng bằng đá thường có hình nửa đường tròn để có thể chịu lực tốt. Trong hình bên, vòm cổng được ghép bởi sáu phiến đá hai bên tạo thành các cung AB, BC, CD, EF, FG, GH bằng nhau và một phiến đá chốt ở đỉnh. Nếu biết chiều rộng cổng và khoảng cách từ điểm B đến đường kính AH, làm thế nào để tính được khoảng cách từ điểm C đến AH?

Hoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Đặt chiều rộng cổng AH = d.

⇒ OA = OB = 12d.

Xét tam giác OBB’ vuông tại B’, có:

sinBOB‘^=BB‘OB=27d2=54d.

Vì Hoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 nên sđHoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 = 2.sđHoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 ⇒AOC^=2BOB‘^

Xét tam giác OCC’ vuông tại C’, có:

Hoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Sau bài học này ta sẽ giải quyết tiếp được bài toán như sau:

Hoạt động khởi động trang 20 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vậy khoảng cách này từ điểm C đến AH là 108d1−54d2.

Giải Toán 11 trang 21 Tập 1

Hoạt động khám phá 1 trang 21 Toán 11 Tập 1: Quan sát Hình 1. Từ hai cách tính tích vô hướng của vectơ OM→ và ON→ sau đây:

Hoạt động khám phá 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Hãy suy ra công thức tính cos(α – β) theo các giá trị lượng giác của α và β. Từ đó, hãy suy ra công thức cos(α + β) bằng cách thay β bằng – β.

Lời giải:

Ta có: cos(α – β) = xM.xN + yM.yN = cosα.cosβ + sinα.sinβ.

Ta có: cos(α + β) = cos(α – (– β)) = cosα.cos(–β) + sinα.sin(–β) = cosα.cosβ – sinα.sinβ.

Thực hành 1 trang 21 Toán 11 Tập 1: Tính sinπ12 và tanπ12.

Lời giải:

Thực hành 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ở ví dụ 1 ta có: cosπ12=6+24

Suy ra tanThực hành 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Hoạt động khám phá 2 trang 21 Toán 11 Tập 1: Hãy áp dụng công thức cộng cho trường hợp β = α và tính các giá trị lượng giác của góc 2α.

Lời giải:

Ta có:

cos2α = cos(α + α) = cosα.cosα – sinα.sinα

= cos2α – sin2α = cos2α + sin2α – 2sin2α

= 1 – 2sin2α = 2cos2α – 1.

sin2α = sin(α + α) = sinα.cosα + cosα.sinα = 2.sinα.cosα .

Hoạt động khám phá 2 trang 21 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Giải Toán 11 trang 22 Tập 1

Thực hành 2 trang 22 Toán 11 Tập 1: Tính cosπ8 và tanπ8.

Lời giải:

+) Ta có:

Thực hành 2 trang 22 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Hoạt động khám phá 3 trang 22 Toán 11 Tập 1: Từ công thức cộng, hãy tính tổng và hiệu của:

a) cos(α – β) và cos(α + β) ;

b) sin(α – β) và sin(α + β) .

Lời giải:

a) Ta có: cos(α – β) = cosα.cosβ + sinα.sinβ; cos(α + β)

= cosα.cosβ – sinα.sinβ

Khi đó:

cos(α – β) + cos(α + β) = cosα.cosβ + sinα.sinβ + cosα.cosβ – sinα.sinβ

= 2cosα.cosβ.

cos(α – β) – cos(α + β) = cosα.cosβ + sinα.sinβ – cosα.cosβ + sinα.sinβ

= 2sinα.sinβ .

b) Ta có: sin(α – β) = sinα.cosβ + cosα.sinβ; sin(α + β)

= sinα.cosβ – cosα.sinβ

Khi đó:

sin(α – β) + sin(α + β) = sinα.cosβ + cosα.sinβ + sinα.cosβ – cosα.sinβ

= 2sinα.cosβ.

sin(α – β) – sin(α + β) = sinα.cosβ + cosα.sinβ – sinα.cosβ + cosα.sinβ

= 2cosα.sinβ.

Thực hành 3 trang 22 Toán 11 Tập 1: Tính giá trị của các biểu thức sinπ24cos5π24 và sin7π8sin5π8.

Lời giải:

Ta có:

Thực hành 3 trang 22 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Hoạt động khám phá 4 trang 22 Toán 11 Tập 1: Áp dụng công thức biến đổi tích thành tổng cho hai góc lượng giác a=α+β2 và b=α−β2 ta được các đẳng thức nào?

Lời giải:

Ta có:

Hoạt động khám phá 4 trang 22 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Giải Toán 11 trang 23 Tập 1

Thực hành 4 trang 23 Toán 11 Tập 1: Tính cos7π12 + cosπ12.

Lời giải:

Thực hành 4 trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vận dụng trang 23 Toán 11 Tập 1: Trong bài toán khởi động, cho biết vòm cổng rộng 120 cm và khoảng cách từ B đến đường kính AH là 27 cm. Tính sin α và cos α, từ đó tính khoảng cách từ điểm C đến đường kính AH. Làm tròn kết quả đến hàng phần mười.

Vận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có: OA = OB = 1202= 60 cm.

Xét tam giác OBB’ vuông tại B’, có:

sinBOB‘^=BB‘OB=2760=920.

⇒cosBOB‘^=1−9202=31920

Vì Vận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 nên sđVận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 = 2.sđVận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 ⇒AOC^=2BOB‘^

Xét tam giác OCC’ vuông tại C’, có:

Vận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Sau bài học này ta sẽ giải quyết tiếp được bài toán như sau:

Vận dụng trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vậy khoảng cách này từ điểm C đến AH là 60.9319200≈48,2 (cm).

Bài tập

Bài 1 trang 23 Toán 11 Tập 1: Không dùng máy tính cầm tay, tính các giá trị lượng giác của các góc:

a) 5π12;

b) – 555°.

Lời giải:

a) Ta có:

Bài 1 trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có:

– 555° = π.−555°180°=−37π12=−3π+π12 rad.

Khi đó:

Bài 1 trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 2 trang 23 Toán 11 Tập 1: Tính sinα+π6,cosπ4−α biết sinα=−513 và π<α<3π2.

Lời giải:

Ta có: cosα=−1−−5132=−1213 (vì π<α<3π2).

Ta lại có:

Bài 2 trang 23 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Giải Toán 11 trang 24 Tập 1

Bài 3 trang 24 Toán 11 Tập 1: Tính các giá trị lượng giác của góc 2α, biết:

a) sinα = 33 và 0<α<π2;

b) sinα2=34 và π<α<2π.

Lời giải:

a) Ta có: Bài 3 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (vì 0<α<π2).

Khi đó:

Bài 3 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: Bài 3 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Khi đó:

Bài 3 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 4 trang 24 Toán 11 Tập 1: Rút gọn các biểu thức sau:

a) 2sinα+π4 – cosα;

b) (cosα + sinα)2 – sin2α.

Lời giải:

a) 2sinα+π4 – cosα

Bài 4 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

= sinα + cosα – cosα

= sinα.

b) (cosα + sinα)2 – sin2α

= cos2α + sin2α + 2sinαcosα – 2sinαcosα

= 1

Bài 5 trang 24 Toán 11 Tập 1: Tính các giá trị lượng giác của góc α, biết:

a) cos2α=25 và −π2<α<0;

b) sin2α=−49 và π2<α<3π4.

Lời giải:

a) Ta có: cos2α=2cos2α−1=25

⇔cos2α=710

⇔cosα=7010 (vì −π2<α<0).

Mặt khác cos2α=1−2sin2α=25

⇔sin2α=310

⇔sinα=−30100 (vì −π2<α<0).

Khi đó:

Bài 5 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) sin2α=−49 và π2<α<3π4.

Ta có π2<α<3π4⇔π<2α<3π2

Bài 5 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta có: cos2α=2cos2α−1=−659

⇔cos2α=9−6518

⇔cosα=9−6518 (vì π2<α<3π4).

Mặt khác cos2α=1−2sin2α=−659

⇔sin2α=65+118

⇔sinα=65+118 (vì π2<α<3π4).

Khi đó:

Bài 5 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 6 trang 24 Toán 11 Tập 1: Chứng minh rằng tam giác ABC, ta có sinA = sinB.cosC + sinC.cosB.

Lời giải:

Xét tam giác ABC, có:

A + B + C = 180° ⇒ A = 180° – (B + C)

sinA = sin(180° – (B + C)) = sin(B + C) = sinB.cosC + sinC.cosB.

Bài 7 trang 24 Toán 11 Tập 1: Trong Hình 3, tam giác ABC vuông tại B và có hai cạnh góc vuông là AB = 4, BC = 3. Vẽ điểm D nằm trên tia đối của tia CB thỏa mãn CAD^=30°. Tính tanBAD^, từ đó tính độ dài cạnh CD.

Bài 7 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Xét tam giác ABC vuông tại B có:

tanBAC^=34.

Ta lại có: BAD^=BAC^+CAD^

Bài 7 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tam giác ABD vuông tại B có:

tanBAD^=BDAB⇒BD=tanBAD^.AB=2,34.4≈9,36.

⇒ CD = BD – BC ≈ 9,36 – 3 = 6,36.

Bài 8 trang 24 Toán 11 Tập 1: Trong Hình 4, pít – tông M của động cơ chuyển động tịnh tiến qua lại dọc theo xi lanh làm quay trục khuỷu IA. Ban đầu I, A, M thẳng hàng. Cho α là góc quay của trục khuỷu, O là vị trí của pít – tông khi α=π2 và H là hình chiếu của A lên Ix. Trục khuỷu IA rất ngắn so với độ dài thanh truyền AM nên có thể xem như độ dài MH không đổi và gần bằng MA.

a) Biết IA = 8cm, viết công thức tính tọa độ xM của điểm M trên trục Ox theo α.

b) Ban đầu α = 0. Sau 1 phút chuyển động, xM = – 3cm. Xác định xM sau 2 phút chuyển động. Làm tròn kết quả đến hàng phần mười.

Bài 8 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Tại α=π2 thì H trùng I, M trùng O nên MH = OI do đó OM = IH.

Xét tam giác AHI vuông tại H có: IH = cosα.IA = 8cosα.

Bài 9 trang 24 Toán 11 Tập 1: Trong Hình 5, ba điểm M, N, P nằm ở đầu các cánh quạt của tua bin gió. Biết các cánh quạt dài 31m, độ cao của điểm M so với mặt đất là 30m, góc giữa các cánh quạt là 2π3 và số đo góc (OA, OM) là α.

a) Tính sinα và cosα.

b) Tính sin của các góc lượng giác (OA, ON) và (OA, OP) từ đó tính chiều cao của các điểm N và P so với mặt đất (theo đơn vị mét). Làm tròn kết quả đến hàng phần trăm.

Bài 9 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Tính sinα và cosα

Bài 9 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.

Ta có: MH = 60 – 30 = 30 m.

Khi đó hoành độ điểm M là 30.

Mặt khác hoành độ điểm M là: xM = 31.cosα.

⇒ cosα = 3031

⇒ sinα=−1−30312=−6131.

b) Vì các cánh quạt tạo thành 3 góc bằng nhau nên MOP^=NOP^=MON^=120°

Bài 9 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vì vậy chiều cao của điểm P so với mặt đất khoảng: 31.sinα + 60 = 89,76 m.

Ta có: cosAOP^≈1−0,962=0,28.

Ta có: AON^=AOP^+PON^

Bài 9 trang 24 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Vì vậy chiều cao của điểm N so với mặt đất khoảng: 31.sinα + 60 = 89,76 m.

Video bài giảng Toán 11 Bài 3: Các công thức lượng giác – Chân trời sáng tạo

Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giá trị lượng giác của một góc lượng giác

Bài 3: Các công thức lượng giác

Bài 4: Hàm số lượng giác và đồ thị

Bài 5: Phương trình lượng giác

Bài tập cuối chương 1

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Các công thức lượng giác (Chân trời sáng tạo 2023) | Giáo án Toán 11

Next post

Bài giảng điện tử Hàm số lượng giác và đồ thị | Chân trời sáng tạo Giáo án PPT Toán 11

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán