Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Lý thuyết Hai mặt phẳng song song (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

By admin 09/10/2023 0

Lý thuyết Toán lớp 11 Bài 13: Hai mặt phẳng song song

A. Lý thuyết Hai mặt phẳng song song

1. Hai mặt phẳng song song

Hai mặt (α) và (β) được gọi là song song với nhau nếu chúng không có điểm chung. Kí hiệu (α)// (β) hay (β)//(α).

 (ảnh 1) 

*Nhận xét: {(α)//(β)d⊂(α)⇒d//(β).

2. Điều kiện và tính chất của hai mặt phẳng song song

Nếu mặt phẳng (α) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng phẳng (β)thì (α)và (β)song song với nhau.

  (ảnh 2)

Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.

Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.

 (ảnh 3) 

3. Định lí Thalès trong không gian

Ba mặt phẳng đôi một song song chắn trên hai cát tuyến phân biệt bất kì những đoạn thẳng tương ứng tỉ lệ.

  (ảnh 4)

ABA′B′=BCB′C′=ACA′C′

4. Hình lăng trụ và hình hộp

Cho hai mặt phẳng song song (α) và (α′). Trên (α) cho đa thức đa giác lồi A1A2...An. Qua các đỉnhA1,A2,...,Anvẽ các đường thẳng đôi một song song và cắt mặt phẳng (α′)tại A1′,A2′,...,An′. Hình gồm hai đa giácA1A2...An, A1′A2′...An′ và các tứ giác A1A1′A2′A2,A2A2′A3′A3,…,AnAn′A1′A1được gọi là hình lăng trụ và kí hiệu là A1A2...An.A1′A2′...An′.

 

Các điểm A1,A2,...,An và A1′,A2′,...,An′được gọi là các đỉnh, các đoạn thẳng A1A1′,A2A2′,...,AnAn′được gọi là các cạnh bên, các đoạn thẳng A1A2,A2A3,...,AnA1và A1′A2′,A2′A3′,...,An′A1′ gọi là cạnh  đáy của hình trụ.

Hai đa giác A1A2...Anvà A1′A2′...An′được gọi là hai mặt đáy của hình lăng trụ.

Các tứ giác A1A1′A2′A2,A2A2′A3′A3,…,AnAn′A1′A1 gọi là các mặt bên của hình trụ.

 (ảnh 5) 

Hình lăng trụ tứ giác ABCD.A’B’C’D’ có hai đáy là hình bình hành được gọi là hình hộp.

 

B. Bài tập Hai mặt phẳng song song

Bài 1: Trong không gian cho ba mặt phẳng phân biệt (α), (β), (γ). Những mệnh đề nào sau đây đúng?

a) Nếu (α) chứa một đường thẳng song song với (β) thì (α) // (β).

b) Nếu (α) và (β) cắt (γ) thì (α) và (β) song song với nhau.

c) Nếu (α) và (β) song song với (γ) thì (α) song song với (β).

Hướng dẫn giải

a) Sai. Vì để (α) // (β) thì (α) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song (β).

b) Sai. Vì (α) và (β) cắt (γ) thì (α) và (β) có thể cắt nhau.

c) Đúng. Vì (α) và (β) là hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba là mặt phẳng (γ) thì (α) và (β) song song với nhau.

Bài 2: Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của AC và BD. Trung điểm của SA, SD lần lượt là M, N. Chứng minh rằng: (OMN) // (SBC).

Hướng dẫn giải

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song

Ta có: Trong tam giác SAC, MO là đường trung bình. Suy ra MO // AC

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song nên MO // (SBC).

SD, BD có N và O lần lượt là trung điểm nên NO là đường trung bình của tam giác SBD. Suy ra NO // SB.

Do đó, NO // (SBC).

Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song suy ra (OMN) // (SBC).

Bài 3: Cho hình tứ diện ABCD. Trên cạnh AB lấy các điểm A1, A2 sao cho AA1 = A1A2 = A2B. Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (BCD) và lần lượt đi qua A1, A2. Mặt phẳng (P) cắt các cạnh AC, AD lần lượt tại C1, D1. Mặt phẳng (Q) cắt các cạnh AC, AD lần lượt tại D1, D2. Chứng minh AC1 = C1C2 = C2C và AD1 = D1D2 = D2D.

Hướng dẫn giải

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song

Áp dụng định lí Thales cho ba mặt phẳng (BCD), (P), (Q) và hai cát tuyến AB, AC ta có: AC1AA1=C1C2A1A2=C2CA2B mà AA1 = A1A2 = A2B.

Suy ra: AC1 = C1C2 = C2C.

Chứng minh tương tự: Áp dụng định lí Thales cho ba mặt phẳng (BCD), (P), (Q) và hai cát tuyến AB, AD ta có: AD1AA1=D1D2A1A2=D2DA2B mà AA1 = A1A2 = A2B

Suy ra: AD1 = D1D2 = D2D.

Bài 4: Cho hình hộp ABCD.A’B’C’D’. Gọi I là trung điểm của A’B’. Mặt phẳng (IBD) cắt hình hộp theo thiết diện là hình gì?

Hướng dẫn giải

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song

Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 13: Hai mặt phẳng song song

Suy ra giao tuyến của (IBD) với (A’B’C’D’) là đường thẳng d đi qua I và song song với BD.

– Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của d và A’D’.

Suy ra, IM // BD // B’D’.

Khi đó thiết diện là tứ giác IMDB và tứ giác này là hình thang.

Video bài giảng Toán 11 Bài 13: Hai mặt phẳng song song – Kết nối tri thức

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 12: Đường thẳng và mặt phẳng song song

Lý thuyết Bài 13: Hai mặt phẳng song song

Lý thuyết Bài 14: Phép chiếu song song

Lý thuyết Bài 15: Giới hạn của dãy số

Lý thuyết Bài 16: Giới hạn của hàm số

Lý thuyết Bài 17: Hàm số liên tục

Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Kết nối tri thức hay, chi tiết khác

Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác

Lý thuyết Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Lý thuyết Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Lý thuyết Chương 4: Quan hệ song song trong không gian

Lý thuyết Chương 5: Giới hạn. Hàm số liên tục

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giáo án Nhớ đồng (Kết nối tri thức 2023) | Giáo án Ngữ văn 11

Next post

Giải SGK Toán 11 Bài 13 (Kết nối tri thức): Hai mặt phẳng song song

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán