Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 11

Phương pháp giải và bài tập về Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng chọn lọc

By admin 10/10/2023 0

Tài liệu Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng gồm nội dung chính sau:

Phương pháp

–          Tóm tắt lý thuyết ngắn gọn và phương pháp giải Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng.

–          Gồm 19 bài tập tự luyện đa dạng có đáp án và lời giải chi tiết Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng.

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng (ảnh 1)

DẠNG 11. CÁCH CHỨNG MINH HAI MẶT PHẲNG VUÔNG GÓC, CHỨNG MINH ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG

 

Phương pháp:

* Chứng minh hai mặt phẳng vuông góc

 Để chứng minh (P) ⊥ (Q), ta có thể chứng minh bởi một trong các cách sau:

     · Chứng minh trong (P) có một đường thẳng a mà a ⊥ (Q).

     · Chứng minh (P),(Q)^=900

* Chứng minh đường thẳng vuông góc với mặt phẳng

Để chứng minh d ⊥ (P), ta có thể chứng minh bởi một trong các cách sau:

     · Chứng minh d ⊂ (Q) với (Q) ⊥ (P) và d vuông góc với giao tuyến c của (P) và (Q).

     · Chứng minh d = (Q) ∩ (R) với (Q) ⊥ (P) và (R) ⊥ (P).

     · Sử dụng các cách chứng minh đã biết ở phần trước.

 

Câu 1: Cho tứ diện ABCD có AB⊥BCD. Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong ADC vẽ DK⊥AC tại K. Khẳng định nào sau đây sai ?

A. ADC⊥ABE.      B. ADC⊥DFK.      C. ADC⊥ABC.      D. BDC⊥ABE.

 Hướng dẫn giải:

 

* Ta có  CD⊥BECD⊥AB⇒CD⊥ABECD⊂ADC⇒ADC⊥ABE.

Vậy “ADC⊥ABE”: ĐÚNG.

 

Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng (ảnh 2)

 

 

* .DF⊥BCDF⊥AB⇒DF⊥ABCSC⊂ABC⇒DF⊥ACDK⊥AC⇒AC⊥DFKAC⊂ADC⇒ADC⊥DFK

Vậy “ADC⊥DFK”: ĐÚNG.

* Ta có CD⊥BECD⊥AB⇒CD⊥ABECD⊂BDC⇒BDC⊥ABE.

Vậy “BDC⊥ABE”: ĐÚNG.

* “ADC⊥ABC”: SAI

Chọn C

Câu 2: Cho tứ diện ABCD có hai mặt phẳng ABC và ABD cùng vuông góc với DBC. Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chọn khẳng định sai trong các khẳng định sau?

A. (ABE)⊥(ADC).                                                   B. (ABD)⊥(ADC).        

C. (ABC)⊥(DFK).                                                   D. (DFK)⊥(ADC).

 Hướng dẫn giải:

Cách chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng (ảnh 3)

Ta có: ABC⊥BCDABD⊥BCDABC∩ABD=AB⇒AB⊥BCD.

Mặt khác: CD⊥BECD⊥AB⇒CD⊥ABE nên câu A đúng.

 ABC⊥BCDABC∩BCD=BCDF⊥BC⇒DF⊥ABC nên câu C đúng.

Theo trên ta có DF⊥ABC nên DF⊥AC.

Vậy ta có AC⊥DFAC⊥DK⇒AC⊥DKF⇒ACD⊥DKF. Do đó câu D đúng.

Chọn B.

Câu 3: Cho hình hộp chữ nhật ABCD.A‘B‘C‘D‘. Khẳng định nào sau đây không đúng?

A. Tồn tại điểm O cách đều tám đỉnh của hình hộp.

B. Hình hộp có 6 mặt là 6 hình chữ nhật.

C. Hai mặt ACC‘A‘ và BDD‘B‘ vuông góc nhau.

D. Hình hộp có 4 đường chéo bằng nhau và đồng qui tại trung điểm của mỗi đường.

Xem thêm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết, bài tập về Chương trình Hóa học lớp 11 có đáp án

Next post

SBT Lịch sử 11 Bài 16: Các nước Đông Nam Á giữa hai cuộc chiến tranh (1918 – 1939) | Giải SBT Lịch sử lớp 11

Bài liên quan:

Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11

Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11

20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11

Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới

Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)

Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11

Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết

Leave a Comment Hủy

Mục lục

  1. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  2. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  3. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  4. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  5. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  6. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  7. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  8. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  9. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  10. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  11. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  12. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  13. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  14. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  15. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  16. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  17. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  18. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  19. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  20. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  22. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  23. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  24. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  25. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  26. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  27. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  28. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  29. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  30. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  31. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  32. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  33. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  34. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  35. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  36. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  37. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  38. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  39. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11
  40. Giáo án Toán 11 Bài 6 (Kết nối tri thức 2023): Cấp số cộng
  41. Lý thuyết Cấp số cộng (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  42. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  43. Bài giảng điện tử Cấp số nhân | Kết nối tri thức Giáo án PPT Toán 11
  44. 20 Bài tập Cấp số nhân (sách mới) có đáp án – Toán 11
  45. Giáo án Toán 11 Bài 7 (Kết nối tri thức 2023): Cấp số nhân
  46. Lý thuyết Cấp số nhân (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  47. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  48. Bài giảng điện tử Bài tập cuối chương 2 trang 56 | Kết nối tri thức Giáo án PPT Toán 11
  49. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2 trang 40
  50. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 2
  51. Lý thuyết Toán 11 Chương 2 (Kết nối tri thức 2023): Dãy số. Cấp số cộng và cấp số nhân hay, chi tiết
  52. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán