Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 7

Lý thuyết Các trường hợp bằng nhau của tam giác vuông (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

By admin 16/10/2023 0

Lý thuyết Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông

Lý thuyết Các trường hợp bằng nhau của tam giác vuông

1. Ba trường hợp bằng nhau của tam giác vuông

• Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA‘B‘C‘vuông tại A’có:

AB = A’B’; AC = A’C’. Khi đó ΔABC= ΔA‘B‘C‘(hai cạnh góc vuông).

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 1)

• Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA‘B‘C‘vuông tại A’có:

AC = A’C’; C^=C‘^. Khi đó ΔABC= ΔA‘B‘C‘(cạnh góc vuông – góc nhọn kề).

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 2)

• Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA‘B‘C‘vuông tại <A’có:

BC = B’C’; C^=C‘^. Khi đó ΔABC= ΔA‘B‘C‘(cạnh huyền – góc nhọn).

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 3)

2. Trường hợp bằng nhau đặc biệt của tam giác vuông

• Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCvuông tại A và ΔA‘B‘C‘vuông tại A’có:

BC = B’C’; AC = A’C’. Khi đó ΔABC= <ΔA‘B‘C‘(cạnh huyền – cạnh góc vuông).

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 4)

Bài tập Các trường hợp bằng nhau của tam giác vuông

Bài 1. Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 5)

Hướng dẫn giải

a) Hai tam giác DEG (vuông tại G) và tam giác DFG (vuông tại G) có:

DG là cạnh chung

EDG^=FDG^

Nên ΔDEG=ΔDFG (cạnh góc vuông – góc nhọn kề).

b) Hai tam giác HIK (vuông tại I) và tam giác KJH (vuông tại J) có:

HK là cạnh chung

HI = KJ

Nên ΔHIK=ΔKJH (cạnh huyền – cạnh góc vuông).

c) Hai tam giác MLO (vuông tại L) và tam giác ONM (vuông tại N) có:

MO là cạnh chung

LOM^=NMO^

Nên ΔMLO=ΔONM (cạnh huyền –góc nhọn).

d) Hai tam giác SRP (vuông tại R) và tam giác QPR (vuông tại P) có:

RP là cạnh chung

SR = QP

Nên ΔSRP=ΔQPR (hai cạnh góc vuông).

Bài 2. Cho hình chữ nhật ABCD, M là trung điểm của cạnh CD. Chứng minh rằng ΔADM=ΔBCM.

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 6)

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 7)

ABCD là hình chữ nhật ⇒ AD = BC và ADM^=BCM^=90°

Xét tam giác ADM (vuông tại D) và tam giác BCM (vuông tại C) có:

AD = BC (chứng minh trên)

DM = CM (theo giả thiết)

⇒ ΔADM=ΔBCM (hai cạnh góc vuông)

Bài 3. Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Chứng minh rằng:

a) ΔBAC=ΔDAC;

b) AC vuông góc với BD.

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 8)

Hướng dẫn giải

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 9)

Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông (ảnh 10)

a) Xét tam giác BAC (vuông tại B) và tam giác DAC (vuông tại D) có:

AC là cạnh chung

AB = AD (theo giả thiết)

⇒ΔBAC=ΔDAC (cạnh huyền – cạnh góc vuông)

b) Gọi H là giao điểm của AC và BD.

Vì ΔBAC=ΔDAC (theo câu a) ⇒ BAC^=DAC^ (hai góc tương ứng) hay BAH^=DAH^

Xét tam giác BAH và tam giác DAH có:

AB = AD (theo giả thiết)

BAH^=DAH^ (chứng minh trên)

AH là cạnh chung

⇒ΔBAH=ΔDAH (c.g.c)

⇒AHB^=AHD^ (hai góc tương ứng)

Mà AHB^+AHD^=180°(hai góc kề bù)

Nên AHB^=AHD^=90°

⇒AC ⊥ BD (đpcm).

Xem thêm các bài tóm tắt lý thuyết Toán 7 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Lý thuyết Bài 15: Các trường hợp bằng nhau của tam giác vuông

Lý thuyết Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Lý thuyết Toán 7 Chương 4: Tam giác bằng nhau

Lý thuyết Bài 17: Thu thập và phân loại dữ liệu

Lý thuyết Bài 18: Biểu đồ hình quạt tròn

Tags : Tags Các trường hợp bằng nhau của tam giác vuông   Lý thuyết Toán 7   toán 7
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Top 100 Đề thi Toán lớp 8 Kết nối tri thức năm học 2023 – 2024 mới nhất

Next post

Sách bài tập Toán 6 Bài 5 (Cánh diều): Phép nhân các số nguyên

Bài liên quan:

20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7

Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7

Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới

Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án

Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)

Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7

Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7

Leave a Comment Hủy

Mục lục

  1. 20 câu Trắc nghiệm Tập hợp các số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  2. Lý thuyết Tập hợp các số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  3. 20 Bài tập Tập hợp các số hữu tỉ có đáp án – Toán 7
  4. Giải sgk tất cả các môn lớp 7 Kết nối tri thức | Giải sgk các môn lớp 7 chương trình mới
  5. Trọn bộ Trắc nghiệm Toán 7 Kết nối tri thức có đáp án
  6. Giải sgk Toán 7 (cả 3 bộ sách) | Giải bài tập Toán 7 (hay, chi tiết)
  7. Bài giảng điện tử Tập hợp các số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  8. Bài giảng điện tử Toán 7 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 7
  9. Giáo án Toán 7 Bài 1 (Kết nối tri thức 2023): Tập hợp các số hữu tỉ
  10. Giáo án Toán 7 Kết nối tri thức (cả năm) mới nhất 2023
  11. Vở thực hành Toán 7 Kết nối tri thức | Giải VTH Toán 7 Tập 1, Tập 2 hay, chi tiết
  12. Vở thực hành Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  13. Lý thuyết Toán lớp 7 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 7 | Kết nối tri thức
  14. Sách bài tập Toán 7 Kết nối tri thức | SBT Toán 7 | Giải SBT Toán 7 | Giải sách bài tập Toán 7 hay nhất | Giải SBT Toán 7 Tập 1, Tập 2 | Giải SBT Toán lớp 7 Kết nối tri thức | SBT Toán 7 KNTT
  15. Giải sgk Toán 7 Kết nối tri thức | Giải Toán 7 | Giải Toán lớp 7 | Giải bài tập Toán 7 hay nhất | Giải Toán 7 Tập 1, Tập 2 Kết nối tri thức
  16. Sách bài tập Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  17. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  18. 20 câu Trắc nghiệm Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  19. Lý thuyết Cộng, trừ, nhân, chia số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  20. 21 Bài tập Cộng, trừ, nhân, chia số hữu tỉ có đáp án – Toán 7
  21. Bài giảng điện tử Cộng, trừ, nhân, chia số hữu tỉ | Kết nối tri thức Giáo án PPT Toán 7
  22. Giáo án Toán 7 Bài 2 (Kết nối tri thức 2023): Cộng, trừ, nhân, chia số hữu tỉ
  23. Vở thực hành Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  24. Sách bài tập Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  25. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  26. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 14
  27. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 11, 12, 13
  28. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  29. 20 câu Trắc nghiệm Lũy thừa với số mũ tự nhiên của 1 số hữu tỉ (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  30. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  31. Vở thực hành Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  32. 20 Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ có đáp án – Toán 7
  33. Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
  34. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  35. 22 câu Trắc nghiệm Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức) có đáp án 2023 – Toán lớp 7
  36. Lý thuyết Thứ tự thực hiện các phép tính. Quy tắc chuyển vế (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7
  37. Bài giảng điện tử Thứ tự thực hiện các phép tính. Quy tắc chuyển vế | Kết nối tri thức Giáo án PPT Toán 7
  38. Giáo án Toán 7 Bài 4 (Kết nối tri thức 2023): Thứ tự thực hiện các phép tính. quy tắc chuyển vế
  39. Vở thực hành Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện phép tính. Quy tắc chuyển vế
  40. 20 Bài tập Thứ tự thực hiện các phép tính. Quy tắc chuyển vế có đáp án – Toán 7
  41. Sách bài tập Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  42. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  43. Giáo án Toán 7 (Kết nối tri thức 2023): Luyện tập chung trang 23
  44. Vở thực hành Toán 7 (Kết nối tri thức): Luyện tập chung trang 19, 20, 21
  45. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  46. 32 câu Trắc nghiệm Toán lớp 7 Chương 1 (Kết nối tri thức) có đáp án: Số hữu tỉ
  47. Lý thuyết Toán 7 Chương 1 (Kết nối tri thức 2023): Số hữu tỉ hay, chi tiết
  48. Giáo án Toán 7 (Kết nối tri thức 2023): Bài tập cuối chương 1
  49. Vở thực hành Toán 7 (Kết nối tri thức): Bài ôn tập cuối chương 1
  50. 24 Bài tập Toán 7 Chương 1 có đáp án: Số hữu tỉ
  51. Sách bài tập Toán 7 (Kết nối tri thức): Ôn tập chương 1 trang 20, 21
  52. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán