Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Vở thực hành Toán 8 - KNTT

Bài tập cuối chương 1

By admin 06/09/2023 0

Giải VTH Toán lớp 8 Bài tập cuối chương 1

B – CÂU HỎI TRẮC NGHIỆM

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 23 vở thực hành Toán 8 Tập 1: Đơn thức −23x2yz3 có:

A. hệ số −2, bậc 8.

B. hệ số −23, bậc 5.

C. hệ số −1, bậc 9.

D. hệ số −23, bậc 6.

Lời giải:

Đáp án đúng là: D

Đơn thức −23x2yz3 có hệ số là −23 và có bậc là: 2 + 1 + 3 = 6.

Câu 2 trang 23 vở thực hành Toán 8 Tập 1: Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:

A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.

C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.

D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.

Lời giải:

Đáp án đúng là: B

Ta có:

• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)

= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1

= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1

= x2y + xy2 + xy + 1.

• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)

= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1

= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1

= 5x2y – 5xy2 + xy – 1.

Câu 3 trang 23 vở thực hành Toán 8 Tập 1: Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức:

A. 4x2y3z3.

B. −12x2y3z3.

C. −12x3y3z3.

D. 4x3y3z3.

Lời giải:

Đáp án đúng là: B

Ta có 6x2yz.(−2y2z2) = [6.(−2)].x2.(y.y2).(z.z2) = −12x2y3z3.

Câu 4 trang 23 vở thực hành Toán 8 Tập 1: Khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là

A. −4x2y + 3xy2.

B. −4xy2 + 3x2y.

C. −10x2y + 4xy2.

D. −10x2y + 4xy2.

Lời giải:

Đáp án đúng là: A

Ta có (8x3y2 – 6x2y3) : (−2xy) = 8x3y2 : (−2xy) – 6x2y3 : (−2xy)

= −4x2y + 3xy2.

C – BÀI TẬP

Bài 5 trang 23 vở thực hành Toán 8 Tập 1: Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất

a) bao nhiêu hạng tử bậc 2? Cho ví dụ.

b) bao nhiêu hạng tử bậc nhất? Cho ví dụ.

c) bao nhiêu hạng tử khác 0? Cho ví dụ.

Lời giải:

Gọi M là một đa thức bậc hai thu gọn với hai biến x và y. Khi đó:

a) Các hạng tử bậc hai của M chỉ có thể đồng dạng với một trong ba đơn thức xy; x2 và y2. Do đó M có nhiều nhất là ba hạng tử bậc hai.

Ví dụ, đa thức bậc hai 2x2 – y2 + 4xy + 5; đa thức này có 3 hạng tử bậc hai là 2x2; y2 và 4xy.

b) Các hạng tử bậc nhất của M chỉ có thể đồng dạng với một trong hai đơn thức x và y. Do đó M có nhiều nhất là hai hạng tử bậc nhất.

Ví dụ, đa thức bậc hai 2x + 5y – 6; đa thức này có 2 hạng tử bậc nhất là 2x và 5y.

c) Các hạng tử khác 0 của M gồm các hạng tử bậc hai, bậc nhất và một hạng tử số (hạng tử tự do). Do đó M có 3 + 2 + 1 = 6 hạng tử khác 0.

Ví dụ: x2 + 2y2 – 4xy + 5x – 8y + 4; đa thức này có 3 hạng tử bậc hai, 2 hạng tử bậc nhất và 1 hạng tử số.

Bài 6 trang 24 vở thực hành Toán 8 Tập 1: Cho biểu thức 3x3(x5 – y5) + y5(3x3 – y3).

a) Rút gọn biểu thức đã cho.

b) Tính giá trị của biểu thức đã cho nếu biết y4=x43.

Lời giải:

a) Rút gọn: 3x3(x5 – y5) + y5(3x3 – y3) = 3x8 – y8.

b) Tính giá trị: Khi y4=x43, ta có:

y8=y42=x432=3x8.

Thay y8 = 3x8 vào biểu thức 3x8 – y8, ta được: 3x8 – 3x8 = 0.

Từ đó giá trị của biểu thức đã cho bằng 0 khi y4=x43,

Bài 7 trang 24 vở thực hành Toán 8 Tập 1: Rút gọn biểu thức

142x2+yx−2y2+142x2−yx+2y2.

Lời giải:

Đặt P=2x2+yx−2y2 và Q=2x2−yx+2y2.

Khi đó biểu thức đã cho có dạng: 14P+14Q=14P+Q.

Ta lần lượt tính P, Q và P + Q:

P=2x2+yx−2y2=2x3−4x2y2+xy−2y3.

Q=2x2−yx+2y2=2x3+4x2y2−xy−2y3.

P + Q = (2x3 – 4x2y2 + xy – 2y3) + (2x3 + 4x2y2 – xy – 2y3)

= 4x3 – 4y3.

Vậy kết quả cuối cùng là

14P+Q=144x3−4y3=x3−y3.

Bài 8 trang 24 vở thực hành Toán 8 Tập 1: Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) bằng cách cắt bốn hình vuông cạnh x centimét ở bốn góc rồi gấp lại. Biết rằng miếng bìa có chiều dài là y centimét, chiều rộng là z centimét.

Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp

Tìm đa thức (ba biến x, y, z) biểu thị thể tích của chiếc hộp. Xác định bậc của đa thức đó.

Lời giải:

Sau khi gấp lại ta được chiếc hộp với 3 kích thước là x, y và z.

Do đó thể tích của nó là V = xyz.

Vậy V là một đa thức bậc 3.

Bài 9 trang 25 vở thực hành Toán 8 Tập 1: Biết rằng D là một đơn thức sao cho –2x3y4 : D = xy2. Hãy tìm thương của phép chia:

(10x5y2 – 6x3y4 + 8x2y5) : D.

Lời giải:

Do –2x3y4 : D = xy2 nên D = −2x3y4 : xy2 = −2x2y2. Vậy ta có phép chia

(10x5y2 – 6x3y4 + 8x2y5) : (−2x2y2) = −5x3 + 3xy2 – 4y3.

Bài 10 trang 25 vở thực hành Toán 8 Tập 1: Tìm đơn thức E, biết rằng (6x2y3 – E) : 2xy = 3xy2 + 13x2y.

Lời giải:

Ta có (6x2y3 – E) : 2xy = (6x2y3 : 2xy) – (E : 2xy) = 3xy2 – E : 2xy.

So sánh kết quả với thương đã cho của phép chia, ta suy ra E : 2xy = −13x2y.

Vậy E=2xy.−13x2y=−23x3y2.

Bài 11 trang 25 vở thực hành Toán 8 Tập 1: Làm phép chia sau theo hướng dẫn:

[8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2.

Hướng dẫn: Đặt y = 2x – 5.

Lời giải:

Đặt 2x – 5 = y.

• Thay thế 2x – 5 trong đa thức bị chia bởi y, ta được đa thức

A = 8x3y2 – 6x2y3 + 10xy2.

• Tương tự, thay thế 2x – 5 trong đơn thức chia bởi y, ta được B = 2xy2.

Từ đó, phép chia đã cho có dạng

A : B = (8x3y2 – 6x2y3 + 10xy2) : 2xy2.

• Thực hiện phép chia này ta được thương là 4x2 – 3xy + 5.

• Thay thế người lại, y bởi 2x – 5 trong đa thức thương, ta được

4x2 – 3x(2x – 5) + 5

= 4x2 – 6x2 + 15x + 5 = – 2x2 + 15x + 5.

Đó là thương của phép chia đã cho.

Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 21

Bài tập cuối chương 1

Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Bài 7: Lập phương của một tổng. Lập phương của một hiệu

Bài 8: Tổng và hiệu hai lập phương

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài 10: Bài tiết và cân bằng nội môi

Next post

Ôn tập chủ đề 1

Bài liên quan:

Bài 1: Đơn thức

Bài 2: Đa thức

Bài 3: Phép cộng và phép trừ đa thức

Luyện tập chung trang 13

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Luyện tập chung trang 21

Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Leave a Comment Hủy

Mục lục

  1. Bài 1: Đơn thức
  2. Bài 2: Đa thức
  3. Bài 3: Phép cộng và phép trừ đa thức
  4. Luyện tập chung trang 13
  5. Bài 4: Phép nhân đa thức
  6. Bài 5: Phép chia đa thức cho đơn thức
  7. Luyện tập chung trang 21
  8. Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  9. Bài 7: Lập phương của một tổng. Lập phương của một hiệu
  10. Bài 8: Tổng và hiệu hai lập phương
  11. Luyện tập chung trang 35
  12. Bài 9: Phân tích đa thức thành nhân tử
  13. Luyện tập chung trang 39
  14. Bài tập cuối chương 2
  15. Bài 10: Tứ giác
  16. Bài 11: Hình thang cân
  17. Luyện tập chung trang 49
  18. Bài 12: Hình bình hành
  19. Luyện tập chung trang 54
  20. Bài 13: Hình chữ nhật
  21. Bài 14: Hình thoi và hình vuông
  22. Luyện tập chung trang 63
  23. Bài tập cuối chương 3
  24. Bài 15: Định lí Thalès trong tam giác
  25. Bài 16: Đường trung bình của tam giác
  26. Bài 17: Tính chất đường phân giác của tam giác
  27. Luyện tập chung trang 77
  28. Bài tập cuối chương 4
  29. Bài 18: Thu thập và phân loại dữ liệu
  30. Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ
  31. Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ
  32. Luyện tập chung trang 96
  33. Bài tập cuối chương 5

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán