Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Vở thực hành Toán 8 - KNTT

Bài tập cuối chương 2

By admin 06/09/2023 0

Giải VTH Toán lớp 8 Bài tập cuối chương 2

A. CÂU HỎI TRẮC NGHIỆM

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 41 vở thực hành Toán 8 Tập 1: Đa thức x2−9x+8 được phân tích thành tích của hai đa thức

A. x – 1 và x + 8.

B. x – 1 và x – 8.

C. x – 2 và x – 4.

D. x – 2 và x + 4.

Lời giải:

Đáp án đúng là: B

Ta có x2 – 9x + 8 = (x2 – x) – (8x – 8)

= x(x – 1) – 8(x – 1) = (x – 1)(x – 8).

Câu 2 trang 41 vở thực hành Toán 8 Tập 1: Khẳng định nào sau đây là đúng?

A. (A – B)(A + B) = A2 + 2AB + B2.

B. (A + B)(A – B) = A2 – 2AB + B2.

C. (A + B)(A – B) = A2 + B2.

D. (A + B)(A – B) = A2 – B2.

Lời giải:

Đáp án đúng là: D

Ta có (A + B)(A – B) = A2 – B2 (hằng đẳng thức hiệu hai bình phương).

Câu 3 trang 41 vở thực hành Toán 8 Tập 1: Biểu thức 25x2 + 20xy + 4y2 viết dưới dạng bình phương của một tổng là:

A. [5x + (−2y)]2.

B. [2x + (−5y)]2.

C. (2x + 5y)2.

D. (5x + 2y)2.

Lời giải:

Đáp án đúng là: D

Ta có 25x2 + 20xy + 4y2 = (5x)2 + 2.5x.2y + (2y)2

= (5x + 2y)2.

Câu 4 trang 41 vở thực hành Toán 8 Tập 1: Rút gọn biểu thức A = (2x + 1)3 – 6x(2x + 1) ta được:

A. x3 + 8.

B. x3 + 1.

C. 8x3 + 1.

D. 8x3 – 1.

Lời giải:

Đáp án đúng là: C

Ta có A = (2x + 1)3 – 6x(2x + 1)

= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13 – 12x2 – 6x

= 8x3 + 12x2 + 6x + 1 – 12x2 – 6x = 8x3 + 1.

B. TỰ LUẬN

Bài 5 trang 41 vở thực hành Toán 8 Tập 1: Tính nhanh giá trị của các biểu thức:

a) x2 – 4x + 4 tại x = 102.

b) x3 + 3x2 + 3x + 1 tại x = 999.

Lời giải:

a) Ta có A = x2 – 4x + 4 = x2 – 2.2.x + 22 = (x – 2)2

Thay x = 102 vào đẳng thức A, ta được:

A = (102 – 2)2 = 1002 = 10 000.

b) Ta có B = x3 + 3x2 + 3x + 1 = (x + 1)3.

Thay x = 999 vào đẳng thức B, ta được:

(999 + 1)3 = 10003 = 1 000 000 000.

Bài 6 trang 42 vở thực hành Toán 8 Tập 1: Rút gọn các biểu thức:

a) (2x – 5y)(2x + 5y) + (2x + 5y)2.

b) (x + 2y)(x2 – 2xy + 4y2) + (2x – y)(4x2 + 2xy + y2).

Lời giải:

a) Ta có (2x – 5y)(2x + 5y) + (2x + 5y)2

= (2x)2 – (5y)2 + (2x)2 + 2.(2x).(5y) + (5y)2

= 4x2 – 25y2 + 4x2 + 20xy + 25y2

= 8x2 + 20xy.

b) Ta có (x + 2y)(x2 – 2xy + 4y2) + (2x – y)(4x2 + 2xy + y2)

= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]

= (x + 2y)[x2 – x.2y + (2y)2] + (2x – y)[(2x)2 + 2x.y + y2]

= x3 + (2y)3 + (2x)3 – y3

= x3 + 8y3 + 8x3 – y3

= 9x3 + 7y3.

Bài 7 trang 42 vở thực hành Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 6x2 – 24y2.

b) 64x3 – 27y3.

c) x4 – 2x3 + x2.

d) (x – y)3 + 8y3.

Lời giải:

a) Ta có 6x2 – 24y2 = 6(x2 – 4y2) = 6[x2 – (2y)2] = 6(x + 2y)(x – 2y).

b) Ta có 64x3 – 27y3 = (4x)3 – (3y)3 = (4x – 3y)[(4x)2 + 4x.3y + (3y)2]

= (4x – 3y)(16x2 + 12xy + 9y2).

c) Ta có x4 – 2x3 + x2 = x2(x2 – 2x + 1) = x2(x – 1)2.

d) Ta có (x – y)3 + 8y3 = (x – y)3 + (2y)3

= (x – y + 2y)[(x – y)2 – (x – y).2y + (2y)2]

= (x + y)(x2 – 2xy + y2 – 2xy + 2y2 + 4y2)

= (x + y)(x2 – 4xy + 7y2).

Bài 8 trang 42 vở thực hành Toán 8 Tập 1: Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách, hãy giải thích hằng đẳng thức (a + b)2 = a2 + 2ab + b2.

Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách

Lời giải:

Diện tích của hình vuông ABCD là (a + b)2.

Diện tích của hình vuông P là a2. Diện tích của hình vuông S là b2;

Diện tích của hình chữ nhật Q và R lần lượt là ab; ab.

Diện tích hình vuông ABCD bằng tổng diện tích bốn hình P, Q, R, S nên ta có

a2 + ab + ab + b2 = a2 + 2ab + b2 = (a + b)2.

Bài 9 trang 43 vở thực hành Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:

a) 2x2 – 3x + 1.

b) 3x2 + 4x + 1.

Lời giải:

a) Ta không thể áp dụng ngay phương pháp đặt nhân tử chung hay nhóm các hạng tử để phân tích đa thức này thành nhân tử, mà ta cần phải tách hạng tử −3x = −2x – x và ta có

2x2 – 3x + 1 = 2x2 – 2x – x + 1 = (2x2 – 2x) – (x – 1)

= 2x(x – 1) – 1.(x – 1)

= (2x – 1)(x – 1).

b) Tương tự câu a) ta không thể áp dụng ngay phương pháp đặt nhân tử chung, phương pháp nhóm các hạng tử hay sử dụng hằng đẳng thức cho đa thức 3x2 + 4x +1, mà phải tách hạng tử 4x = 3x + x, khi đó ta có

3x2 + 4x +1 = 3x2 + 3x + x + 1 = (3x2 + 3x) + (x + 1)

= 3x(x + 1) + (x + 1)

= (3x + 1)(x + 1).

Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 39

Bài tập cuối chương 2

Bài 10: Tứ giác

Bài 11: Hình thang cân

Luyện tập chung trang 49

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài 15: Khái quát về sinh trưởng và phát triển ở sinh vật

Next post

Bài 8: Dinh dưỡng và tiêu hóa ở động vật

Bài liên quan:

Bài 1: Đơn thức

Bài 2: Đa thức

Bài 3: Phép cộng và phép trừ đa thức

Luyện tập chung trang 13

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Luyện tập chung trang 21

Bài tập cuối chương 1

Leave a Comment Hủy

Mục lục

  1. Bài 1: Đơn thức
  2. Bài 2: Đa thức
  3. Bài 3: Phép cộng và phép trừ đa thức
  4. Luyện tập chung trang 13
  5. Bài 4: Phép nhân đa thức
  6. Bài 5: Phép chia đa thức cho đơn thức
  7. Luyện tập chung trang 21
  8. Bài tập cuối chương 1
  9. Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  10. Bài 7: Lập phương của một tổng. Lập phương của một hiệu
  11. Bài 8: Tổng và hiệu hai lập phương
  12. Luyện tập chung trang 35
  13. Bài 9: Phân tích đa thức thành nhân tử
  14. Luyện tập chung trang 39
  15. Bài 10: Tứ giác
  16. Bài 11: Hình thang cân
  17. Luyện tập chung trang 49
  18. Bài 12: Hình bình hành
  19. Luyện tập chung trang 54
  20. Bài 13: Hình chữ nhật
  21. Bài 14: Hình thoi và hình vuông
  22. Luyện tập chung trang 63
  23. Bài tập cuối chương 3
  24. Bài 15: Định lí Thalès trong tam giác
  25. Bài 16: Đường trung bình của tam giác
  26. Bài 17: Tính chất đường phân giác của tam giác
  27. Luyện tập chung trang 77
  28. Bài tập cuối chương 4
  29. Bài 18: Thu thập và phân loại dữ liệu
  30. Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ
  31. Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ
  32. Luyện tập chung trang 96
  33. Bài tập cuối chương 5

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán