Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Vở thực hành Toán 8 - KNTT

Bài 12: Hình bình hành

By admin 06/09/2023 0

Giải VTH Toán lớp 8 Bài 12: Hình bình hành

B – CÂU HỎI TRẮC NGHIỆM

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 52 vở thực hành Toán 8 Tập 1: Hãy chọn câu sai.

A. Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường.

B. Hình bình hành có hai góc đối bằng nhau.

C. Hình bình hành có các cạnh đối song song và bằng nhau.

D. Hình bình hành có hai đường chéo vuông góc với nhau.

Lời giải:

Đáp án đúng là: D

Theo tính chất của hình bình hành thì có các cạnh đối bằng nhau, các góc đối bằng nhau, hai đường chéo cắt nhau tại trung điểm mỗi đường.

Do đó câu sai là: Hình bình hành có hai đường chéo vuông góc với nhau.

Câu 2 trang 52 vở thực hành Toán 8 Tập 1: Điền cụm từ thích hợp vào chỗ trống.

a) Tứ giác có các …………. đối …………………………………….. là một hình bình hành.

b) Tứ giác có ……………………………………… song song và ………………………………………….. là một hình bình hành.

c) Trong hình bình hành, hai góc kề …………….. bất kì có …………………. bằng 180°.

d) Tứ giác có ……………………………………….. cắt nhau tại …………………………………. của mỗi đường là hình bình hành.

e) Tứ giác có các góc ……………………………………. là một hình bình hành.

Lời giải:

a) Tứ giác có các cạnh đối bằng nhau là một hình bình hành.

b) Tứ giác có các cạnh đối song song và bằng nhau là một hình bình hành.

c) Trong hình bình hành, hai góc kề một cạnh bất kì có tổng số đo góc bằng 180°.

d) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

e) Tứ giác có các góc đối bằng nhau là một hình bình hành.

Câu 3 trang 52 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD có A^=120°. Khi đó:

A. B^=120°,  C^=60°,  D^=120°.

B. AB // DC, AB = BC.

C. B^=60°,  C^=120°,  D^=60°.

D. B^=D^=60°,  C^=60°.

Lời giải:

Đáp án đúng là: C

Hình bình hành ABCD có AB // DC, AB = CD nên B sai.

Ta có A^=120° mà AB // DC, suy ra D^=180°−A^=60°.

Mà hình bình hành có hai góc đối bằng nhau nên D^=B^=60°;  A^=C^=120°.

Vậy C là đáp án đúng.

C – BÀI TẬP

Bài 1 trang 52, 53 vở thực hành Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

a) Hình thang có hai cạnh bên song song là hình bình hành.

b) Hình thang có hai cạnh bên bằng nhau là hình bình hành.

c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.

Lời giải:

a) Đúng, vì tứ giác có các cạnh đối song song là hình bình hành (theo định nghĩa).

b) Sai, vì hình thang cân có hai cạnh bên bằng nhau mà không song song thì không phải là hình bình hành.

c) Đúng, vì tứ giác có các cặp cạnh đối song song và bằng nhau là hình bình hành (theo định nghĩa).

Bài 2 trang 53 vở thực hành Toán 8 Tập 1: Tính các góc còn lại của hình bình hành ABCD trong Hình 3.19.

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.19

Lời giải:

Hình bình hành có các góc đối bằng nhau và các góc kề bù nhau nên

C^=100°,  B^=180°−A^=80°,  D^=80°.

Bài 3 trang 53 vở thực hành Toán 8 Tập 1: Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành

Lời giải:

a) Tứ giác ABCD là hình bình hành vì B^=D^=80° và A^=C^=100°

b) Tứ giác ABCD không là hình bình hành vì nếu nó là hình bình hành thì hai góc đối bằng nhau và khi đó tổng số đo bốn góc của tứ giác ABCD bé hơn 360°.

c) Do tổng số đo bốn góc của tứ giác ABCD bằng 360°. nên D^=70°. Khi đó, ABCD là hình bình hành vì các góc đối của nó bằng nhau.

Vậy ABCD là hình bình hành.

Bài 4 trang 53 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) Hai tứ giác AEFD, AECF là những hình bình hành.

b) EF = AD, AF = EC.

Lời giải:

Cho hình bình hành ABCD Gọi E, F lần lượt là trung điểm của các cạnh AB

(H.3.21). a) Do ABCD là hình bình hành nên AB // CD, AB = CD, từ đó AE // CF, AE = EB = DF = FC.

Do đó tứ giác AEFD là hình bình hành.

Tương tự, tứ giác AECF là hình bình hành vì có hai cạnh đối AE và CF song song và bằng nhau.

b) Vì AEFD là hình bình hành nên AD = EF.

Vì AECF là hình bình hành nên AF = EC.

Bài 5 trang 54 vở thực hành Toán 8 Tập 1: Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Lời giải:

Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD

(H.3.22). ABCD là hình bình hành nên AO = CO, BO = DO.

Xét ∆OAM và ∆OCN có: OAM^=OCN^ (hai góc so le trong), AOM^=CON^ (hai góc đối đỉnh), AO = CO nên ∆OAM = ∆OCN (g.c.g).

Suy ra OM = ON.

Ta có OM = ON, BO = DO nên tứ giác MBND có hai đường chéo MN, BD cắt nhau tại trung điểm mỗi đường nên MBND là hình bình hành.

Bài 6 trang 54 vở thực hành Toán 8 Tập 1: Cho tam giác nhọn ABC có trực tâm H. Vẽ các đường thẳng d vuông góc với AB tại B, d’ vuông góc với AC tại C, d và d’ cắt nhau tại N. Chứng mình rằng:

a) Tứ giác BHCN là hình bình hành.

b) HN đi qua trung điểm I của đoạn thẳng BC.

Lời giải:

Cho tam giác nhọn ABC có trực tâm H Vẽ các đường thẳng d vuông góc

(H.3.23). Vì H là trực tâm của ∆ABC nên CH ⊥ AB, BH ⊥ AC.

Ta có CH ⊥ AB, NB ⊥ AB ⇒ CH // NB.

Tương tự BH // CN.

Từ đó, suy ra BHCN là hình bình hành.

b) Ta có BHCN là hình bình hành nên BC và HN cắt nhau tại trung điểm mỗi đường, do đó HN đi qua trung điểm I của đoạn thẳng BC.

Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 49

Bài 12: Hình bình hành

Luyện tập chung trang 54

Bài 13: Hình chữ nhật

Bài 14: Hình thoi và hình vuông

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài 19: Các nhân tố ảnh hưởng đến sinh trưởng và phát triển ở động vật

Next post

Bài 12: Miễn dịch ở người và động vật 

Bài liên quan:

Bài 1: Đơn thức

Bài 2: Đa thức

Bài 3: Phép cộng và phép trừ đa thức

Luyện tập chung trang 13

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Luyện tập chung trang 21

Bài tập cuối chương 1

Leave a Comment Hủy

Mục lục

  1. Bài 1: Đơn thức
  2. Bài 2: Đa thức
  3. Bài 3: Phép cộng và phép trừ đa thức
  4. Luyện tập chung trang 13
  5. Bài 4: Phép nhân đa thức
  6. Bài 5: Phép chia đa thức cho đơn thức
  7. Luyện tập chung trang 21
  8. Bài tập cuối chương 1
  9. Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
  10. Bài 7: Lập phương của một tổng. Lập phương của một hiệu
  11. Bài 8: Tổng và hiệu hai lập phương
  12. Luyện tập chung trang 35
  13. Bài 9: Phân tích đa thức thành nhân tử
  14. Luyện tập chung trang 39
  15. Bài tập cuối chương 2
  16. Bài 10: Tứ giác
  17. Bài 11: Hình thang cân
  18. Luyện tập chung trang 49
  19. Luyện tập chung trang 54
  20. Bài 13: Hình chữ nhật
  21. Bài 14: Hình thoi và hình vuông
  22. Luyện tập chung trang 63
  23. Bài tập cuối chương 3
  24. Bài 15: Định lí Thalès trong tam giác
  25. Bài 16: Đường trung bình của tam giác
  26. Bài 17: Tính chất đường phân giác của tam giác
  27. Luyện tập chung trang 77
  28. Bài tập cuối chương 4
  29. Bài 18: Thu thập và phân loại dữ liệu
  30. Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ
  31. Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ
  32. Luyện tập chung trang 96
  33. Bài tập cuối chương 5

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán