Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Chân trời

Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số liên tục

By admin 06/01/2024 0

Giải SBT Toán 11 Bài 3: Hàm số liên tục

Giải SBT Toán 11 trang 90

Bài 1 trang 90 SBT Toán 11 Tập 1: Dùng định nghĩa, xét tính liên tục của hàm số:

a) f(x) = x3 ‒ 3x + 2 tại điểm x = ‒2;

b) fx=3x+2 tại điểm x = 0.

Lời giải:

a) Tập xác định của hàm số là D = ℝ, chứa điểm ‒2.

Ta có:

⦁ f(‒2) = (‒2)3 ‒ 3.(‒2) + 2 = 0;

⦁ limx→−2fx=limx→−2x3−3x+2=−23 – 3.(-2) + 2 = 0.

Suy ra limx→−2fx=f−2.

Vậy hàm số liên tục tại điểm x = ‒2.

b) Tập xác định của hàm số là D=−23;+∞, chứa điểm 0.

Ta có:

⦁ f0=3⋅0+2=2.

⦁ limx→0fx=limx→03x+2=limx→03x+2 

=3limx→0x+2=3⋅0+2=2

Suy ra limx→0fx=f0

Vậy hàm số liên tục tại điểm x = 0.

Bài 2 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của mỗi hàm số sau tại điểm x = 2.

a) fx=6−2x khi x≥22x2−6 khi x<2.

b) fx=x2−4x−2 khi x≠20  khi x=2.

Lời giải:

a) Tập xác định của hàm số là ℝ, chứa điểm 2.

Ta có:

⦁ limx→2+fx=limx→2+6−2x=6−2⋅2=2

⦁ limx→2−fx=limx→2−2x2−6 = 2 . 26 – 6 = 2

⦁ f(2) = 6 ‒ 2.2 = 2.

Suy ra limx→2+fx=limx→2−fx=f2

Vậy hàm số liên tục tại điểm x = 2.

b) Tập xác định của hàm số là D = ℝ, chứa điểm 2.

Ta có:

⦁ limx→2fx=limx→2x2−4x−2=limx→2x−2x+2x−2

=limx→2x+2=2+2=4

⦁ f(2) = 0

Suy ra limx→2fx≠f2

Vậy hàm số không liên tục tại điểm x = 2.

Bài 3 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của hàm số:

a) fx=|x+1| tại điểm x = ‒1;

b) gx=x−1x−1khi x≠11khi x=1 tại điểm x = 1.

Lời giải:

a) Tập xác định của hàm số là ℝ, chứa điểm ‒1.

Ta có:

⦁ limx→−1+x+1=limx→−1+x+1=−1+1=0

⦁ limx→−1−x+1=limx→−1−−x+1=limx→−1−−x−1=1−1=0

⦁ f−1=−1+1=0

Suy ra limx→−1+fx=limx→−1−fx=f−1

Vậy hàm số liên tục tại x = ‒1.

b) Tập xác định của hàm số là D = ℝ, có chứa điểm 1.

Ta có:

⦁ limx→1+gx=limx→1+x−1x−1=limx→1+x−1x−1=limx→1+1=1.

⦁ limx→1−gx=limx→1−x−1x−1=limx→1−1−xx−1=limx→1−−1=−1

Suy ra limx→1+gx≠limx→1−gx

Vậy hàm số không liên tục tại điểm x = ‒1.

Bài 4 trang 90 SBT Toán 11 Tập 1: Cho hàm số fx=x+2−2x−2 khi x≠2a khi x=2.

Lời giải:

Ta có:

limx→2fx=limx→2x+2−2x−2=limx→2x+2−2x+2+2x−2x+2+2

=limx→2x+2−4x−2x+2+2=limx→21x+2+2=14.

Hàm số liên tục tại x = 2 khi và chỉ khi limx→2fx=f2⇔14=a.

Vậy a=14 là giá trị cần tìm.

Bài 5 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:

a) f(x) = x3 ‒ x2 + 2;

b) fx=x+1x2−4x;

c) fx=2x−1x2−x+1;

d) fx=x2−2x.

Lời giải:

a) f(x) là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.

b) Ta có: x2 ‒ 4x ≠ 0 ⇔ x ≠ 0 và x ≠ 4.

f(x) là hàm số phân thức có tập xác định D = ℝ ∖ {0; 4} nên nó liên tục trên các khoảng (‒∞; 0), (0; 4) và (4; +∞).

c) Ta có: x2−x+1=x−122+34>0,∀x∈ℝ

f(x) là hàm số phân thức có tập xác định ℝ nên nó liên tục trên ℝ.

d) Ta có: x2 ‒ 2x ≥ 0 ⇔ x ≤ 0 và x ≥2

f(x) là hàm số căn thức có tập xác định D = (‒∞; 0] ∪ [2; +∞) nên nó liên tục trên các khoảng (‒∞; 0] và [2; +∞).

Bài 6 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:

a) fx=tanx1−x2;

b) fx=1sinx.

Lời giải:

a) Điều kiện: 1 ‒ x2 > 0 ⇔ ‒1 < x < 1.

Hàm số y=1−x2 xác định và liên tục trên (‒1; 1).

Hàm số y = tanx xác định và liên tục trên các khoảng −π2+kπ;π2+kπ (với k ∈ ℤ)

Do −1;1⊂−π2;π2 nên hàm số y = tanx xác định và liên tục trên (‒1; 1).

Suy ra, hàm số fx=tanx1−x2 liên tục trên (‒1; 1).

b) Điều kiện: sinx ≠ 0 ⇔ x ≠ kπ (k ∈ ℤ)

Do đó hàm số liên tục trên các khoảng kπ;k+1π với k ∈ ℤ.

Bài 7 trang 90 SBT Toán 11 Tập 1: Cho hai hàm số f(x) = x ‒ 1 và g(x) = x2 ‒ 3x + 2. Xét tính liên tục của các hàm số:

a) y = f(x).g(x);

b) y=fxgx;

c) y=1fx+gx.

Lời giải:

a) Ta có y = f(x).g(x) = (x ‒ 1)(x2 ‒ 3x + 2)

Hàm số trên là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.

b) Ta có y=fxgx=x−1x2−3x+2

Ta có: x2 ‒ 3x + 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.

Hàm số trên là hàm số phân thức có tập xác định D = ℝ ∖ {1; 2} nên nó liên tục trên các khoảng (‒∞; 1), (1; 2) và (2; +∞).

c) Ta có y=1fx+gx=1x−1+x2−3x+2

=1x2−2x+1=1x−12

Ta có: (x – 1)2> 0 ⇔ x ≠ 1

Hàm số trên là hàm phân thức có tập xác định D = ℝ \ {1} nên nó liên tục trên các khoảng (‒∞; 1) và (1; +∞).

Giải SBT Toán 11 trang 91

Bài 8 trang 91 SBT Toán 11 Tập 1: Cho hai hàm số fx=2−x     khi x<1x2+x khi x≥1và gx=2x−x2 khi x<1−x2+a khi x≥1.

Tìm giá trị của tham số a sao cho hàm số h(x) = f(x) + g(x) liên tục tại x = 1.

Lời giải:

Ta có: hx=fx+gx=2+x−x2 khi x<1x+a khi x≥1.

⦁ limx→1−hx=limx→1−2+x−x2=2+1−12=2;

⦁ limx→1+hx=limx→1+x+a=1+a;

⦁ h1=1+a.

Hàm số h(x) liên tục tại x = 1 khi và chỉ khi limx→1−hx=limx→1+hx=h1.

⇔2=1+a⇔a=1

Vậy a = 1.

Bài 9 trang 91 SBT Toán 11 Tập 1: Cho hàm số y=fx=x2+ax+b khi x<2x2−x        khi x≥2.

Tìm giá trị của các tham số a và b sao cho hàm số y = f(x) liên tục trên ℝ.

Lời giải:

Ta có: y=fx=x2+ax+b khi x<2x2−x        khi x≥2

Suy ra: y=fx=x2+ax+b    khi     −2<x<2x2−x          khi     x≤−2;   x≥2.

⦁ limx→−2−fx=limx→−2−x2−x=−2⋅2+2=−8=f−2;

⦁ limx→−2+fx=limx→−2+x2+ax+b=4−2a+b;

⦁ limx→2−fx=limx→2−x2+ax+b=4+2a+b;

⦁ limx→2+fx=limx→2+x2−x=2⋅2−2=0=f2

Hàm số liên tục tại x = ‒2 và x = 2 khi và chỉ khi

limx→−2−fx=limx→−2+fx=f−2limx→2−fx=limx→2+fx=f2

⇔4−2a+b=−84+2a+b=0⇔−2a+b=−122a+b=−4⇔a=2b=−8.

Vậy a = 2, b = ‒8 là các giá trị cần tìm.

Bài 10 trang 91 SBT Toán 11 Tập 1: Chứng minh rằng phương trình:

a) x3 + 2x ‒ 1 = 0 có nghiệm thuộc khoảng (‒1; 1).

b) x2+x+x2=1 có nghiệm thuộc khoảng (0; 1).

Lời giải:

a) Xét hàm số f(x) = x3 + 2x ‒ 1 xác định trên khoảng (‒1; 1) và có:

⦁ f(‒1) = (‒1)3 + 2.(‒1) ‒ 1 = ‒4.

⦁ f(1) = 13 + 2.1 ‒ 1 = 2.

Do f(‒1).f(1) < 0 nên phương trình f(x) = 0 có nghiệm thuộc (‒1; 1).

b) Xét hàm số fx=x2+x+x2−1 xác định trên khoảng (0; 1) và có:

⦁ f0=02+0+02−1=−1.

⦁ f1=12+1+12−1=2.

Do f(0).f(1) < 0nên phương trình f(x) = 0 hay x2+x+x2=1 có nghiệm thuộc (0; 1).

Bài 11 trang 91 SBT Toán 11 Tập 1: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + (y ‒ 1)2 = 1. Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng d: y = m với đường tròn (C). Viết công thức xác định hàm số y = Q(m). Hàm số này không liên tục tại các điểm nào?

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x^2 + (y ‒ 1)^2 = 1. Với mỗi số thực m gọi Q(m)

Lời giải:

Ta có: Q(m) = 0   khi m < 0 hay m > 21   khi m = 0 hay m = 22   khi 0 < m < 2

Ta có limm→0−Qm=0;limm→0+Qm=2;f0=1

nên limm→0−Qm≠limm→0+Qm≠f0

Do đó hàm số y = Q(m) không liên tục tại m = 0.

Ta có: limm→2−Qm=2; limm→2+Qm=0;   f2=1 nên limm→2−Qm≠  limm→2+Qm≠  f2

Do đó hàm số y = Q(m) không liên tục tại m = 2.

Vậy hàm số không liên tục tại các điểm m = 0 và m = 2.

Bài 12 trang 91 SBT Toán 11 Tập 1: Cho nửa đường tròn đường kính AB = 2. Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc α0<α<π2.

Kí hiệu diện tích tam giác ABC là S(α) (phụ thuộc vào α). Xét tính liên tục của hàm số S(α) trên khoảng 0;π2 và tính các giới hạn limα→0+Sα,limα→π2Sα.

Cho nửa đường tròn đường kính AB = 2. Đường thẳng d thay đổi luôn đi qua A

Lời giải:

Do tam giác ABC vuông tại C nên với α∈0;π2 ta có:

⦁ AC = AB.cosα = 2cosα;

⦁ BC = AB.sinα = 2sinα;

⦁ Sα=12AC⋅BC=12⋅2cosα⋅2sinα=sin2α.

Do hàm số y = sin2α đều liên tục trên ℝ, mà 0;π2⊂ℝ nên hàm số y = S(α) liên tục trên khoảng 0;π2.

Khi đó:

+) limα→0+Sα=limα→0+sin2α=0;

+) limα→π2−Sα=limα→π2−sin2α=0.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song

Bài 3: Đường thẳng và mặt phẳng song song

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit

Next post

Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác

Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác

Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác

Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị
  5. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác
  6. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1
  7. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số
  8. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng
  9. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Cấp số nhân
  10. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 2 trang 64
  11. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Giới hạn của dãy số
  12. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giới hạn của hàm số
  13. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 3 trang 91
  14. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Điểm, đường thẳng và mặt phẳng trong không gian
  15. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Hai đường thẳng song song
  16. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Đường thẳng và mặt phẳng song song
  17. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hai mặt phẳng song song
  18. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phép chiếu song song
  19. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 4 trang 132
  20. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Số trung bình và mốt của mẫu số liệu ghép nhóm
  21. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
  22. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 5 trang 160
  23. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Phép tính lũy thừa
  24. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit
  25. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit
  26. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Phương trình, bất phương trình mũ và lôgarit
  27. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 6 trang 24
  28. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Đạo hàm
  29. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Các quy tắc tính đạo hàm
  30. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7
  31. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Hai đường thẳng vuông góc
  32. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Đường thẳng vuông góc với mặt phẳng
  33. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hai mặt phẳng vuông góc
  34. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Khoảng cách trong không gian
  35. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  36. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 8
  37. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Biến cố giao và quy tắc nhân xác suất
  38. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Biến cố hợp và quy tắc cộng xác suất
  39. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 9

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán