Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Chân trời

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Biến cố hợp và quy tắc cộng xác suất

By admin 06/01/2024 0

Giải SBT Toán 11 Bài 2: Biến cố hợp và quy tắc cộng xác suất

Giải SBT Toán 11 trang 99

Bài 1 trang 99 SBT Toán 11 Tập 2: Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung.

a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam hoặc miền Trung”.

b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Hai đoàn viên được gặp cùng đến từ miền Bắc hoặc cùng đến từ miền Nam”.

Lời giải:

a) Không gian mẫu của phép thử là nΩ=63.

Xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam” là 1963.

Xác suất của biến cố “Đoàn viên được gặp đến từ miền Trung” là 1963.

Xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam hoặc miền Trung” là: 1963+1963=3863.

b) Không gian mẫu của phép thử là nΩ=C632.

Số trường hợp xảy ra của biến cố “ Hai đoàn viên được gặp cùng đến từ miền Bắc” là C252.

Xác suất của biến cố “ Hai đoàn viên được gặp cùng đến từ miền Bắc” là C252C632=100651.

Số trường hợp xảy ra của biến cố “ Hai đoàn viên được gặp cùng đến từ miền Nam” là C192.

Xác suất của biến cố “ Hai đoàn viên được gặp cùng đến từ miền Nam” là C192C632=19217.

Xác suất của biến cố “Hai đoàn viên được gặp cùng đến từ miền Bắc hoặc cùng đến từ miền Nam” là 100651+19217=157651.

Bài 2 trang 99 SBT Toán 11 Tập 2: Một túi chứa 2 viên bi xanh, 5 viên bi đỏ và 3 viên bi vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên 3 viên bi từ túi. Tính xác suất của các biến cố:

a) “Cả 3 viên bi lấy ra đều có cùng màu”.

b) “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra”.

c) “Có đúng 2 màu trong 3 viên bi lấy ra”.

Lời giải:

a) Không gian mẫu của phép thử là nΩ=C102.

Số trường hợp xảy ra của biến cố “Cả 3 viên bi lấy ra đều có màu đỏ” là C53.

Xác suất của biến cố “Cả 3 viên bi lấy ra đều có màu đỏ” là C53C103=112.

Số trường hợp xảy ra của biến cố “Cả 3 viên bi lấy ra đều có màu đỏ” là C33.

Xác suất của biến cố “Cả 3 viên bi lấy ra đều có màu vàng” là C33C103=1120.

Xác suất của biến cố “Cả 3 viên bi lấy ra đều có cùng màu” là 112+1120=11120.

b) Số trường hợp xảy ra của biến cố “Không có viên bi xanh nào được lấy ra” là C83.

Xác suất của biến cố “Không có viên bi xanh nào được lấy ra” là

C83C103=715.

Số trường hợp xảy ra của biến cố “Không có viên bi xanh nào được lấy ra” là 2C82.

Xác suất của biến cố “Chỉ có một viên bi xanh được lấy ra” là 2C82C103=715.

Xác suất của biến cố “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra” là 715+715=1415.

c) Gọi A là biến cố “Có đúng 2 màu trong 3 viên bi lấy ra”; B là biến cố “Cả 3 viên bi lấy ra có cùng màu” và C là biến cố “3 viên bi lấy ra có cả 3 màu”.

Ta thấy A=B∪C. Khi đó: PB=11120;

Số trường hợp xảy ra của biến cố C là nC=C21C51C31.

PC=C21C51C31C103=14.

Do B và C là hai biến cố xung khắc nên

PA=PB∪C=PB+PC=11120+14=41120.

Vậy xác suất của biến cố “Có đúng 2 màu trong 3 viên bi lấy ra” là 41120.

Giải SBT Toán 11 trang 100

Bài 3 trang 100 SBT Toán 11 Tập 2: Thanh có 4 tấm thẻ được đánh số 1, 3, 4, 7. Thanh lấy ra 3 trong 4 thẻ và xếp chúng thành một hàng ngang một cách ngẫu nhiên để tạo thành một số có 3 chữ số. Tính xác suất của biến cố A: “Số tạo thành chia hết cho 2 hoặc 3”.

Lời giải:

Không gian mẫu của phép thử là nΩ=4.3.2=24 (số).

Gọi B là biến cố “Số tạo thành chia hết cho 2”, C là biến cố “Số tạo thành chia hết cho 3”.

Do đó, BC là biến cố “Số tạo thành chia hết cho 6”.

Biến cố B xảy ra khi chữ số hàng đơn vị của số tạo thành là 4, có thể xếp được nB=3.2=6 số chia hết cho 2 nên PB=624=14.

Biến cố B xảy ra khi 3 chữ số của số tạo thành là 1, 4, 7, có thể xếp được nB=3.2=6 số chia hết cho 3 nên PC=624=14.

Có thể tạo thành 2 số chia hết cho 6 là 714 và 174 nên PBC=224=112.

VậyPA=PB∪C=PB+PC−PBC=14+14−112=512.

Bài 4 trang 100 SBT Toán 11 Tập 2: Cho A và B là hai biến cố độc lập với nhau.

a) Biết P(A) = 0,4 và P(A¯B) = 0,3. Tính xác suất của các biến cố B và A∪B.

b) Biết P(A¯B) = 0,4 và P(A∪B) = 0,9. Tính xác suất của các biến cố A, B và AB.

Lời giải:

Vì A và B là hai biến cố độc lập nên A¯ và B; A và B¯; A¯ và B¯ cũng độc lập.

a) Ta có PA¯=1−PA=1−0,4=0,6.

• A¯ và B độc lập nên PB=PA¯BPA=0,30,6=0,5.

•A và B độc lập nên PA∪B=PA+PB−PAPB

=0,4+0,5−0,4.0,5=0,7.

b) Vì A¯ và B độc lập nên PA¯B=PA¯.PB=0,4

Hay P(B)=0,4PA¯=0,41−PA.

Khi đó PA∪B=PA+PB−PAPB=0,9

⇔PA+0,41−PA−PA.0,41−PA=0,9

⇔5PA+25=0,9

⇔PA=0,5.

VớiPA=0,5⇒PB=0,40,5=0,8; PAB=PA.PB=0,5.0,8=0,4.

Bài 5 trang 100 SBT Toán 11 Tập 2: Một hộp chứa 10 quả bóng xanh và 10 quả bóng đỏ có kích thước và khối lượng như nhau. Lấy ra ngẫu nhiên đồng thời 5 quả bóng từ hộp. Sử dụng sơ đồ hình cây, tính xác suất của biến cố “Có ít nhất 3 quả bóng xanh trong 5 quả bóng lấy ra”.

Lời giải:

Không gian mẫu của phép thử là C205.

Sơ đồ hình cây số trường hợp của các biến cố:

Một hộp chứa 10 quả bóng xanh và 10 quả bóng đỏ có kích thước và khối lượng như nhau

Khi đó, xác suất của biến cố “Có ít nhất 3 quả bóng xanh trong 5 quả bóng lấy ra” là: C103C102+C104C101+C105C205=12.

Vậy xác suất của biến cố “Có ít nhất 3 quả bóng xanh trong 5 quả bóng lấy ra” là 12.

Bài 6 trang 100 SBT Toán 11 Tập 2: Châu gieo một con xúc xắc cân đối và đồng chất liên tiếp cho đến khi xuất hiện mặt 6 chấm thì dừng lại. Sử dụng sơ đồ hình cây, tính xác suất của biến cố “Châu phải gieo không quá 3 lần để xuất hiện mặt 6 chấm”.

Lời giải:

Sơ đồ hình cây:

Châu gieo một con xúc xắc cân đối và đồng chất liên tiếp cho đến khi xuất hiện

Xác suất của biến cố “Châu phải gieo không quá 3 lần để xuất hiện mặt 6 chấm” là:

16+56.16+562.16+563=91216.

Vậy xác suất của biến cố “Châu phải gieo không quá 3 lần để xuất hiện mặt 6 chấm” là 91216.

Bài 7 trang 100 SBT Toán 11 Tập 2: Trong một trò chơi, Dương chọn ra 5 số từ 100 số tự nhiên đầu tiên. Sau đó, người ta chọn ra ngẫu nhiên 3 số may mắn từ 100 số tự nhiên đầu tiên đó. Tính xác suất của các biến cố:

A: “Không có số may mắn nào trong 5 số Dương đã chọn”;

B: “Có đúng 1 số may mắn trong 5 số Dương đã chọn”.

Lời giải:

Không gian mẫu của phép thử là nΩ=C10095.

Biến cố A xảy ra khi 3 số may mắn nằm trong 95 số mà Dương không chọn. Số trường hợp xảy ra của biến cố A là nC=C953.

Do đó xác suất của biến cố A là: PA=C953C1003≈0,856.

Biến cố B xảy ra khi trong 3 số may mắn, có 1 số Dương đã chọn, 2 số còn lại nằm trong 95 số mà Dương không chọn. Số trường hợp xảy ra của biến cố B là nB=C951.C952.

Do đó, xác suất của biến cố B là: PB=C951C952C1003≈0,138.

Bài 8 trang 100 SBT Toán 11 Tập 2: Một hộp chứa 3 quả bóng xanh và một số quả bóng đỏ có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 2 quả bóng từ hộp. Biết rằng xác suất của biến cố “Lấy được 2 quả bóng đỏ” gấp 5 lần xác suất của biến cố “Lấy được 2 quả bóng xanh”. Tính xác suất của biến cố “Lấy được 2 quả bóng có cùng màu”.

Lời giải:

Gọi n là số quả bóng đỏ trong hộp. Tổng số quả bóng trong hộp là n+3 quả.

Không gian mẫu của phép thử là nΩ=Cn+32.

Số trường hợp xảy ra của biến cố “Lấy được 2 quả bóng xanh” là C32.

Xác suất lấy được 2 quả bóng xanh là C32Cn+32.

Số trường hợp xảy ra của biến cố “Lấy được 2 quả bóng đỏ” là Cn2.

Xác suất lấy được 2 quả bóng đỏ là Cn2Cn+32.

Theo đề bài, ta có:

C32Cn+32.5=Cn2Cn+32⇔nn−12=15⇔n=6 (chọn) hoặc n = 5 (loại).

Khi đó, xác suất của biến cố “Lấy được 2 quả bóng có cùng màu” là

C32Cn+32+Cn2Cn+32=C32C6+32+C62C6+32=C32C92+C62C92=0,5. 

Vậy xác suất của biến cố “Lấy được 2 quả bóng có cùng màu” là 0,5.

Bài 9 trang 100 SBT Toán 11 Tập 2: Gieo ngẫu nhiên 3 con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố A: “Tích số chấm xuất hiện trên mỗi con xúc xắc chia hết cho 15”.

Lời giải:

Gọi B là biến cố “Tích số chấm xuất hiện trên mỗi con xúc xắc không chia hết cho 5”, C là biến cố “Tích số chấm xuất hiện trên mỗi con xúc xắc không chia hết cho 3”.

Khi đó A là biến cố đối của biến cố B∪C.

• Các số chấm không chia hết cho 5 là 1, 2, 3, 4, 6 nên PB=56.

• Các số chấm không chia hết cho 3 là 1, 2, 4, 5 nên PC=46.

• Các số chấm không chia hết cho 3 và 5 là 1, 2, 4 nên PBC=36.

Ta có PB∪C=PB+PC−PBC

=563+463−363=34.

Do đó xác suất của biến cố A là

PA=1−PB∪C=1−34=14.

Bài 10 trang 100 SBT Toán 11 Tập 2: Một hộp chứa 40 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 40. Lấy ra ngẫu nhiên đồng thời hai thẻ từ hộp. Tính xác suất của các biến cố:

a) “Tổng các số ghi trên 2 thẻ lấy ra nhỏ hơn 4 hoặc lớn hơn 76”;

b) “Tích các số ghi trên 2 thẻ lấy ra chia hết cho 10”.

Lời giải:

a) Gọi A là biến cố “Tổng các số ghi trên 2 thẻ lấy ra nhỏ hơn 4 hoặc lớn hơn 76”. A1 là biến cố “Tổng các số ghi trên 2 thẻ lấy ra nhỏ hơn 4” và A2 là biến cố “Tổng các số ghi trên 2 thẻ lấy ra lớn hơn 76”.

Khi đó A=A1∪A2.

Không gian mẫu của phép thử là nA=C402.

Biến cố A1 xảy ra khi 2 tấm thẻ được chọn ghi số 1 và 2. Do đó số trường hợp xảy ra của biến cố A1 là 1. Từ đó

PA1=1C402=1780.

Biến cố A­2 xảy ra khi 2 tấm thẻ được chọn ghi số 37 và 40; 38 và 40; 39 và 40; 38 và 39. Do đó số trường hợp xảy ra của biến cố A2 là 4. Từ đó PA2=4C402=1195.

Do A1 và A2 là hai biến cố xung khắc nên

PA=PA1∪A2=PA1+PA2

=1780+1195=1156.

b) Gọi B là biến cố “Tích các số ghi trên 2 thẻ lấy ra chia hết cho 10”, B1 là biến cố “Tích các số ghi trên 2 thẻ lấy ra không chia hết cho 5” và B2 là biến cố “Tích các số ghi trên 2 thẻ lấy ra không chia hết cho 2”.

Khi đó B là biến cố đối của B1∪B2.

Từ 1 đến 40 có 8 số chia hết cho 5 và 32 số không chia hết cho 5 nên nB1=C322

PB1=C322C402=124195.

Từ 1 đến 40 có 20 số chia hết cho 2 và 20 số không chia hết cho 2 nên nB2=C202

PB2=C202C402=1978.

Từ 1 đến 40 có 4 số chia hết cho 10 nên số các số không chia hết cho 2 và 5 là 32−20+4=16 số. Từ đó ta có

PB1B2=C162C402=213.

Ta có PB1∪B2=PB1+PB2−PB1B2

=124195+1978−213=283390.

Vậy xác suất của biến cố B “Tích các số ghi trên 2 thẻ lấy ra chia hết cho 10” là

PB=1−PB1∪B2=1−283390=107390.

Xem thêm các bài giải SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Khoảng cách trong không gian

Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài tập cuối chương 8

Bài 1: Biến cố giao và quy tắc nhân xác suất

Bài 2: Biến cố hợp và quy tắc cộng xác suất

Bài tập cuối chương 9

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Biến cố giao và quy tắc nhân xác suất

Next post

Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 9

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác

Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác

Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác

Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị
  5. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác
  6. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1
  7. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số
  8. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng
  9. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Cấp số nhân
  10. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 2 trang 64
  11. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Giới hạn của dãy số
  12. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Giới hạn của hàm số
  13. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số liên tục
  14. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 3 trang 91
  15. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Điểm, đường thẳng và mặt phẳng trong không gian
  16. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Đường thẳng và mặt phẳng song song
  18. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hai mặt phẳng song song
  19. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phép chiếu song song
  20. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 4 trang 132
  21. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Số trung bình và mốt của mẫu số liệu ghép nhóm
  22. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
  23. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 5 trang 160
  24. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Phép tính lũy thừa
  25. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit
  26. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit
  27. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Phương trình, bất phương trình mũ và lôgarit
  28. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 6 trang 24
  29. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Đạo hàm
  30. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Các quy tắc tính đạo hàm
  31. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7
  32. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Hai đường thẳng vuông góc
  33. Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Đường thẳng vuông góc với mặt phẳng
  34. Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hai mặt phẳng vuông góc
  35. Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Khoảng cách trong không gian
  36. Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  37. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 8
  38. Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Biến cố giao và quy tắc nhân xác suất
  39. Sách bài tập Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 9

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán