Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180° sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°

A. Lý thuyết Giá trị lượng giác của một góc từ 0° đến 180°

1. Giá trị lượng giác

Mở rộng khái niệm tỉ số lượng giác đối với góc nhọn cho những góc α bất kì với 0° ≤ α ≤ 180°, ta có định nghĩa sau đây:
 

Với mỗi góc α (0° ≤ α ≤ 180°) ta xác định được một điểm M duy nhất trên nửa đường tròn đơn vị sao cho xOM^=α . Gọi (x0; y0) là toạ độ điểm M, ta có:

– Tung độ y0 của M là sin của góc α, kí hiệu là sinα = y0;

– Hoành độ x0 của M là côsin của góc α, kí hiệu là cosα = x0;

– Tỉ số y0x0 (x0 ≠ 0) là tang của góc α, kí hiệu là tanα=y0x0;  

– Tỉ số  y0x0 (y0 ≠ 0) là côtang của góc α, kí hiệu là tanα=x0y0;

Các số sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc α.

Ví dụ 1. Tìm các giá trị lượng giác của góc 150°.

Hướng dẫn giải

Lấy điểm M trên nửa đường tròn đơn vị sao cho xOM^=150°. 

Ta có  MOy^=150°−90°=60°.

Khi đó ta tính được toạ độ của điểm M là −32;12.  

Theo định nghĩa ta có:

 sin150°=12; cos150°=−32;  tan150°=−13;  cot150°=−3.   

Chú ý: 

a) Nếu α là góc nhọn thì các giá trị lượng giác của α đều dương.

Nếu α là góc tù thì sinα > 0, cosα < 0, tanα < 0, cotα < 0.

b) tanα chỉ xác định khi α ≠ 90°.

cotα chỉ xác định khi α ≠ 0° và α ≠ 180°.

Ví dụ 2. Với α = 30° thì sinα > 0, cosα > 0, tanα > 0 và cotα > 0.

Với α = 150° (như trong Ví dụ 1) thì sinα > 0, cosα < 0, tanα < 0 và cotα < 0.

2. Quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Với mọi góc α thoả mãn 0° ≤ α ≤ 180°, ta luôn có:

sin(180° ‒ α) = sinα;

cos(180° ‒ α) = ‒cosα;

tan(180° ‒ α) = ‒tanα (α ≠ 90°);

cot(180° ‒ α) = ‒cotα (0° < α < 180°).

Ví dụ 3.

a) Biết sin60°=32. Tính cos30°, cos150°, sin120°.

b) Biết tan45° = 1. Tính tan135°.

Hướng dẫn giải

a) Ta có: sin60°=32

Suy ra:

cos30°=cos90°−60°=sin60°=32 (vì 30° và 60° là hai góc phụ nhau)cos150°=cos180°−30°=−cos30°=−32 (vì 150° và 30° là hai góc bù nhau)sin120°=sin180°−60°=sin60°=32 (vì 120° và 60° là hai góc bù nhau);

b) Ta có: tan45° = 1.

Suy ra:

tan135° = tan(180° ‒ 45°) = ‒tan45° = ‒1 (vì 135° và 45° là hai góc bù nhau);

3. Giá trị lượng giác của một số góc đặc biệt

Dưới đây là bảng giá trị lượng giác của một số góc đặc biệt:

Chú ý: Trong bảng, kí hiệu “||” để chỉ giá trị lượng giác không xác định.

Ví dụ 4. Tính giá trị các biểu thức sau:

a) A = a2.sin90° + b2.cos90° + c2.cos180°;

b) B = 3 – sin2135° + 2cos2120° ‒ 3tan2150°.

Hướng dẫn giải

a) A =a2.sin90° + b2.cos90° + c2.cos180°

A = a2. 1+ b2.0 +c2.(‒1)

A = a2 ‒ c2.

b) B = 3 – sin2 135° + 2cos2 120° ‒ 3tan2 150° B=3−222+2.−122−3.−332

B=3−12+2.14−3.13

B=3−12+12−1

B = 2.

Ví dụ 5. Tìm góc α (0° ≤ α ≤ 180°) trong mỗi trường hợp sau:

a) sinα=22;

b) cosα = ‒1;

c) tanα = 0;

d) cotα=−33.  

Hướng dẫn giải

a) Ta có: sinα=22 ⇒α = 45° hoặc α = 135°.

b) cosα = ‒1⇒α = 180°.

c) tanα = 0⇒α = 0° hoặc α = 180°.

d) cotα=−33⇒α = 120°.

4. Sử dụng máy tính cầm tay về tính giá trị lượng giác của một góc

Có nhiều loại máy tính cầm tay có thể giúp tính nhanh chóng giá trị lượng giác của một góc.

Chẳng hạn, ta có thể thực hiện trên một loại máy tính cầm tay như sau:

Sau khi mở máy, ẩn liên tiếp các phím SHIFT MENU để màn hình hiện lên bảng lựa chọn.

Ấn phím 2 để vào chế độ cài đặt đơn vị đo góc.

Ấn tiếp phím  1  để xác định đơn vị đo góc là “độ”.

Ấn các phím MENU   1  để vào chế độ tính toán như hình ảnh dưới đây: 
 

4.1. Tính các giá trị lượng giác của góc

Ví dụ 6. Sử dụng máy tính cầm tay, tính sin125°, cos50°12′, tan160°56’25”, cot100°.

Hướng dẫn giải

– Để tính sin125°, ta bấm liên tiếp các phím sau đây

sin 1 25°‘ ‘‘)=:       

Khi đó ta được kết quả hiện trên màn hình là:

Vậy sin125° ≈ 0,81915204429.

– Để tính cos50°12′, ta bấm liên tiếp các phím sau đây:

cos50°‘ ‘‘ 1 2°‘ ‘‘)=     

Khi đó ta được kết quả hiện trên màn hình là:

Vậy cos50°12′ ≈ 0,64010969948.

– Để tính tan160°56’25”, ta bấm liên tiếp các phím sau đây:

Khi đó ta được kết quả hiện trên màn hình là:

Vậy tan160°56’25” ≈ ‒0,345493396426.

– Để tính cot100°, ta bấm liên tiếp các phím sau đây: 
 Khi đó ta được kết quả hiện trên màn hình là:

Vậy cot100° ≈ ‒0,17632698071.

4.2. Xác định số đo của góc khi biết giá trị lượng giác của góc đó

Ví dụ 7. Sử dụng máy tính cầm tay, tìm α (0° < α < 180°) biết sinα = 0,51; cosα = ‒0,7tanα=2; cotα = 1,7.

Hướng dẫn giải

– Để tìm α khi biết sinα = 0,51, ta ấn liên tiếp các phím sau đây:
         
Khi đó ta được kết quả hiện trên màn hình là:
 

Vậy với sinα = 0,51 thì α ≈ 30°39’50”.

Ta đã được học với 0° < α < 180° thì sin(180° ‒ α) = sinα nên ngoài giá trị α ≈ 30°39’50” thì ta còn có giá trị α ≈ 180° ‒ 30°39’50” ≈ 149°20’10”.

Ta bấm máy tính như sau:

– Để tìm α khi biết cosα = ‒0,7, ta ấn liên tiếp các phím sau đây:

Khi đó ta được kết quả hiện trên màn hình là:

Vậy với cosα = ‒0,7 thì α ≈ 134°25’37”.

– Để tìm α khi biết tanα=2, ta ấn liên tiếp các phím sau đây:
Khi đó ta được kết quả hiện trên màn hình là: 

Vậy với tanα=2 thì α ≈ 54°44’8”.

– Để tìm α khi biết cotα = 1,7, trước hết ta tính  , ta ấn liên tiếp các phím sau đây: 
 

Khi đó ta được kết quả hiện trên màn hình là:

Sau đó ta bấm liên tiếp các phím:Khi đó ta được kết quả hiện trên màn hình là:


Vậy với cotα = 1,7 thì α ≈ 30°27’56”.

B. Bài tập tự luyện

Bài 1. Tính giá trị biểu thức:

a) A = sin30°.cos45°.sin60° ‒ cos120°.tan135°.cot150°.

b) B = cos0° + cos20° + cos40° + … + cos160° + cos180°;

c) C=sin180°−x−cos90°−x+sin2x.1sin290°−x–tan2x.

Hướng dẫn giải

a) A = sin30°.cos45°.sin60° ‒ cos120°.tan135°.cot150°

 A=12.22.32−−12.−1.−3

 A=68+32

 A=6+438

b) B = cos0° + cos20° + cos40° + … + cos160° + cos180°

B = (cos0° + cos180°) + (cos20° + cos160°) + … + (cos80° + cos100°)

B = (cos0° ‒ cos0°) + (cos20° ‒ cos20°) + … + (cos80° ‒ cos80°)  (hai góc bù nhau)

B = 0.

c) C=sin180°−x−cos90°−x+sin2x.1sin290°−x–tan2x.C=sinx−sinx+sin2x.1cos2x–tan2x

C = 0 + tan2x ‒ tan2x

C = 0.

Bài 2. Cho góc α  (0° ≤ α ≤ 180°) với tanα=−3. Tính giá trị biểu thức:M=cosα+cot2α−1sin2α.

Hướng dẫn giải

Với tanα=−3 ta có α = 120°.

Suy ra: sinα=32;cosα=−12;cotα=−33.

Do đó: 
M=cosα+cot2α−1sin2α 
M=−12+−332−1322 
M=−12+13−43 
M=−32.

Vậy M=−32.

Bài 3.

a) Chứng minh rằng với mọi góc 0° ≤ α ≤ 180° ta luôn có: sin2α + cos2α = 1.

b) Cho tam giác ABC. Chứng minh rằng:

sin3B2cosA+C2+cos3B2sinA+C2−cosA+CsinB.tanB=2.

Hướng dẫn giải

a) Với mỗi góc α (0° ≤ α ≤ 180°) ta xác định được một điểm M duy nhất trên nửa đường tròn đơn vị sao cho xOM^=α. Gọi (x0; y0) là toạ độ điểm M, ta có:

– Tung độ y0 của M là sin của góc α, kí hiệu là sinα = y0;

– Hoành độ x0 của M là côsin của góc α, kí hiệu là cosα = x0;

Gọi H và K lần lượt là hình chiếu của M lên Ox và Oy.
 Khi đó ta có: OH = x0 = cosα, MH = OK = y0 = sinα, OM = 1.

Tam giác OMH vuông tại H, áp dụng định lí Pythagore ta có:

MH2+OH2=OM2

Hay sin2α + cos2α = 1.

Vậy sin2α + cos2α = 1.

b) Vì A^+B^+C^ = 180° (định lí tổng ba góc trong tam giác) nên:  A^+C^ = 180° ‒ B^.

Suy ra A^+C^2=180°−B^2=90°−B^2.

Ta có:

sin3B2cosA+C2+cos3B2sinA+C2−cosA+CsinB.tanB   =sin3B2cos90°−B2+cos3B2sin90°−B2−cos180°−BsinB.tanB

=sin3B2sinB2+cos3B2cosB2−−cosBsinB.tanB

=sin2B2+cos2B2+cosBsinB.tanB

=sin2B2+cos2B2+cosBsinB.sinBcosB

= 1 + 1 (do sin2α + cos2α = 1 theo câu a)

= 2

Vậy sin3B2cosA+C2+cos3B2sinA+C2−cosA+CsinB.tanB=2.

Bài 4. Sử dụng máy tính cầm tay để thực hiện các yêu cầu sau:

a) Tính sin95°7’16”, cos22°12’21”, tan27°22′, cot24°.

b) Tìm β biết (0° < β < 180°) trong các trường hợp:

i) cosβ = ‒0,19;

ii) tanβ = 1,2.

Hướng dẫn giải

a) – Để tính sin95°7’16”, ta bấm liên tiếp các phím sau đây:
Khi đó ta được kết quả hiện trên màn hình là: 

Vậy sin95°7’16” ≈ 0,99600824395.

– Để tính cos22°12’21”, ta bấm liên tiếp các phím sau đây: 
Khi đó ta được kết quả hiện trên màn hình là: 

Vậy cos22°12’21” ≈ 0,92583211171.

– Để tính tan27°22′, ta bấm liên tiếp các phím sau đây: 
Khi đó ta được kết quả hiện trên màn hình là: 

Vậy tan27°22′ ≈ 0,51761289576.

– Để tính cot24°, ta bấm liên tiếp các phím sau đây: 
Khi đó ta được kết quả hiện trên màn hình là:

Vậy cot24° ≈ 2,2460367739.

b) – Để tìm β khi biết cosβ = ‒0,19, ta ấn liên tiếp các phím sau đây           
Khi đó ta được kết quả hiện trên màn hình là:
 

Vậy với cosβ = ‒0,19 thì β ≈ 100°57’10”.

– Để tìm β khi biết tanβ = 1,2, ta ấn liên tiếp các phím sau đây:
Khi đó ta được kết quả hiện trên màn hình là: 


Vậy với tanβ = 1,2 thì β ≈ 50°11’40”.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 8, BC = 6. Biết SA = 6 và SA vuông góc với mp(ABC). Tính thể tích khối cầu có tâm thuộc phần không gian bên trong của hình chóp và tiếp xúc với tất cả các mặt của hình chóp S.ABC.

Next post

Cho hình lập phương có thể tích bằng 64a3. Thể tích của khối cầu nội tiếp của hình lập phương đó bằng

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  8. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  9. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  10. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  11. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  12. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  13. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  14. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  15. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  16. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  17. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  18. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  19. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  20. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  21. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  22. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  24. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  25. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  26. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  27. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  28. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  29. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  30. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  31. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  32. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  33. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  34. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán