Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

A. Lý thuyết Bất phương trình bậc nhất hai ẩn

1. Khái niệm bất phương trình bậc nhất hai ẩn

– Bất phương trình bậc nhất hai ẩn x, y là bất phương trình có một trong các dạng

ax + by + c < 0; ax + by + c > 0; ax + by + c ≤ 0; ax + by + c ≥ 0,

trong đó a, b, c là những số cho trước, a, b không đồng thời bằng 0, x và y là các ẩn.

Ví dụ:

5x + 2y < 4 là bất phương trình bậc nhất hai ẩn vì bất phương trình chứa hai ẩn x, y ở bậc nhất.

5x + 2y – 3z > 3 không là bất phương trình bậc nhất hai ẩn vì bất phương trình này chứa 3 ẩn x, y, z ở bậc nhất.

2. Nghiệm của bất phương trình bậc nhất hai ẩn

Xét bất phương trình ax + by + c < 0.

Mỗi cặp số (x0; y0) thỏa mãn ax0 + by0 + c < 0 được gọi là một nghiệm của bất phương trình đã cho.

Chú ý: Nghiệm của các bất phương trình ax + by + c > 0; ax + by + c ≤ 0; ax + by + c ≥ 0 được định nghĩa tương tự.

Ví dụ:

+ Bất phương trình bậc nhất hai ẩn 5x + 2y < 4 có các cặp nghiệm là (-1; -2); (0; 0); bởi:

Với x = ‒1, y = ‒2 ta có: 5.(‒1) + 2.(‒2) = ‒9 < 4 nên (‒1; ‒2) là nghiệm của bất phương trình 5x + 2y < 4.

Với x = 0, y = 0 ta có: 5. 0 + 2. 0 = 0 < 4 nên (0; 0) là nghiệm của bất phương trình 5x + 2y < 4.

+ Bất phương trình bậc nhất hai ẩn x ‒ 2y ≥ 4 có các cặp nghiệm là (4; ‒1); (4; 0); bởi:

Với x = 4, y = ‒1 ta có: 4 – 2. (‒1) = 6 ≥ 4 nên (4; ‒1) là nghiệm của bất phương trình x ‒ 2y ≥ 4.

Với x = 4, y = 0 ta có: 4 ‒ 2. 0 = 4 ≥ 4 nên (4; 0) là nghiệm của bất phương trình x ‒ 2y ≥ 4.

3. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn

– Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.

– Người ta chứng minh được: Mỗi phương trình ax + by + c = 0 (a, b không đồng thời bằng 0) xác định một đường thẳng ∆. Đường thẳng ∆ chia mặt phẳng tọa độ Oxy thành hai nửa mặt phẳng, trong đó một nửa (không kể bờ ∆) là tập hợp các điểm (x; y) thỏa mãn ax + by + c > 0, nửa còn lại (không kể bờ ∆) là tập hợp các điểm (x; y) thỏa mãn ax + by + c < 0.

Ta có thể biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax + by + c < 0 như sau:

Bước 1: Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng ∆: ax + by +c = 0.

Bước 2: Lấy một điểm (x0; y0) không thuộc ∆. Tính ax0 +by0 + c.

+ Nếu ax0 + by0 + c < 0 thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ ∆) chứa điểm (x0; y0).

+ Nếu ax0 + by0 + c > 0 thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ ∆) không chứa điểm (x0; y0).

Chú ý: Đối với các bất phương trình bậc nhất hai ẩn dạng ax + by + c ≤ 0 (hoặc ax + by + c ≥ 0) thì miền nghiệm là miền nghiệm của bất phương trình ax + by + c < 0 (hoặc ax + by + c > 0) kể cả bờ.

Ví dụ: Biểu diễn miền nghiệm của bất phương trình x + 2y – 2 > 0 trên mặt phẳng tọa độ:

Bước 1: Vẽ đường thẳng ∆: x + 2y – 2 = 0 trên mặt phẳng tọa độ Oxy.

Bước 2: Lấy điểm O (0; 0) không thuộc ∆ và thay x = 0 và y = 0 vào biểu thức x + 2y – 2 ta được 0 + 2.0 – 2 = ‒2 > 0 là mệnh đề sai.

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ ∆ (không kể bờ ∆) không chứa điểm O (miền nghiệm là miền không bị gạch trên hình)

 

B. Bài tập tự luyện

Bài 1. Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

a) 3x + 5y ‒ 7 < 0

b) 2x2 – y ‒ 1 > 0

c) 4y2 – 3 ≤ 0

d) 4x – 5 < 3y

e) 2x – 5y + 6t  ≥ 0

Hướng dẫn giải

Ta có: 3x + 5y ‒ 7 < 0 có dạng ax + by + c < 0 với a = 3, b = 5 và c = ‒ 7. Do đó bất phương trình a) là bất phương trình bậc nhất hai ẩn.

Ta có: 2x2 – y ‒ 1 > 0 có chứa x2 nên bất phương trình b) không là bất phương trình bậc nhất hai ẩn.

Ta có: 4y2 – 3 ≤ 0 có chứa ẩn y2 nên bất phương trình c) không là bất phương trình bậc nhất hai ẩn.

Ta có 4x – 5 < 3y ⇔ 4x – 3y ‒ 5 < 0 có dạng ax + by + c < 0 với a = 4, b = ‒ 3 và c = ‒ 5. Do đó bất phương trình d) là bất phương trình bậc nhất hai ẩn.

Ta có 2x – 5y + 6t ≥ 0 là bất phương trình bậc nhất ba ẩn x, y, t. Do đó bất phương trình e) không là bất phương trình bậc nhất hai ẩn.

Vậy 3x + 5y ‒ 7 < 0; 4x – 5 < 3y là các bất phương trình bậc nhất hai ẩn.

Bài 2. Bất phương trình sau có phải là bất phương trình bậc nhất hai ẩn không? Nếu có biểu diễn miền nghiệm của nó trên trục tọa độ Oxy: 2x + y – 4 ≤ 0?

Hướng dẫn giải

Bất phương trình 2x + y – 4 ≤ 0 là bất phương trình bậc nhất hai ẩn vì có dạng ax + by + c ≤ 0 với a = 2, b = 1 và c = ‒ 4.

– Biểu diễn miền nghiệm trên trục tọa độ Oxy:

+ Vẽ đường thẳng ∆: 2x + y – 4 = 0 trên mặt phẳng tọa độ Oxy.

+ Lấy điểm O(0;0) không thuộc ∆ thay vào bất phương trình ta có: 2. 0 + 0 – 4 = ‒ 4 ≤ 0 là một mệnh đề đúng.

Vậy miền nghiệm của bất phương trình đã cho trên trục tọa độ Oxy là nửa mặt phẳng bờ ∆ (kể cả bờ ∆) chứa gốc tọa độ O.

Miền nghiệm biểu diễn trên trục tọa độ Oxy:

Bài 3. Cho bất phương trình bậc nhất hai ẩn: 3x + y < 20. Cặp số (x; y) nào trong các cặp số (2; 5), (4; 8), (5; 6), (4; 7), (11; 12) là nghiệm của bất phương trình trên?

Hướng dẫn giải

Thay (x; y) = (2; 5) vào bất phương trình ta có: 3. 2 + 5 = 11 < 20 là mệnh đề đúng. Do đó cặp số (2;5) là nghiệm của bất phương trình đã cho.

Thay (x; y) = (4; 8) vào bất phương trình ta có: 3. 4 + 8 = 20 < 20 là mệnh đề sai. Do đó cặp số (4;8) không là nghiệm của bất phương trình đã cho.

Thay (x; y) = (5; 6) vào bất phương trình ta có: 3. 5 + 6 = 21 < 20 là mệnh đề sai. Do đó cặp số (5;6) không là nghiệm của bất phương trình đã cho.

Thay (x; y) = (4; 7) vào bất phương trình ta có: 3. 4 + 7 = 19 < 20 là mệnh đề đúng. Do đó cặp số (4;7) là nghiệm của bất phương trình đã cho.

Thay (x; y) = (11; 12) vào bất phương trình ta có: 3. 11 + 12 = 45 < 20 mệnh đề sai. Do đó cặp số (11;12) không là nghiệm của bất phương trình đã cho.

Vậy ta có cặp nghiệm (x; y) là: (2; 5); (4; 7).

Bài 4. Cho bất phương trình bậc nhất hai ẩn: x + 4y ≤ 20.

a) Chỉ ra hai nghiệm của bất phương trình trên.

b) Với x = 0 thì có bao nhiêu giá trị của y thỏa mãn bất phương trình.

c) Biểu diễn miền nghiệm của bất phương trình trên trên hệ trục tọa độ Oxy.

Hướng dẫn giải

a) Chọn (x; y) = (0; 0)

Thay x = 0 và y = 0 vào bất phương trình đã cho ta được 0 + 4.0 = 0 ≤ 20 là mệnh đề đúng. Do đó cặp (0; 0) là nghiệm của bất phương trình.

Chọn (x; y) = (0; 1)

Thay x = 0 và y = 1 vào bất phương trình đã cho ta được 0 + 4.1 = 4 ≤ 20 là mệnh đề đúng. Do đó cặp (0; 1) là nghiệm của bất phương trình.

Vậy hai cặp số (0; 0) và (0; 1) là nghiệm của bất phương trình đã cho.

b) Với x = 0 thì bất phương trình trở thành: 4y ≤ 20 ⇔ y ≤ 5 và có vô số giá trị của y thỏa mãn bất phương trình.

c) – Biểu diễn miền nghiệm trên trục tọa độ Oxy:

+ Vẽ đường thẳng ∆: x + 4y – 20 = 0 trên mặt phẳng tọa độ Oxy.

+ Lấy điểm O(0;0) không thuộc ∆ thay vào bất phương trình ta có: 0 + 4. 0 – 20 = ‒ 20 ≤ 0 là một mệnh đề đúng.

Vậy miền nghiệm của bất phương trình đã cho trên trục tọa độ Oxy là nửa mặt phẳng bờ ∆ (kể cả bờ ∆) chứa gốc tọa độ O.

Miền nghiệm biểu diễn trên trục tọa độ Oxy:

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho quả địa cầu có độ dài đường kinh tuyến 30° Đông là 40πcm (tham khảo hình vẽ). Độ dài đường xích đạo là:

Next post

Cho ba hình cầu tiếp xúc ngoài với nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh là 4, 2 và 3. Tích bán kính của ba hình cầu trên là

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  8. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  9. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  10. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  11. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  12. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  13. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  14. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  15. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  16. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  17. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  18. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  19. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  20. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  21. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  22. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  24. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  25. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  26. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  27. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  28. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  29. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  30. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  31. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  32. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  33. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  34. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán