Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 2: Tập hợp sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

A. Lý thuyết Tập hợp

1. Nhắc lại về tập hợp

– Trong toán học, người ta dùng từ tập hợp để chỉ một nhóm đối tượng nào đó hoàn toàn xác định. Mỗi đối tượng trong nhóm gọi là một phần tử của tập hợp đó.

– Người ta thường kí hiệu tập hợp bằng các chữ cái in hoa A, B, C, … và kí hiệu phần tử của tập hợp bằng các chữ cái in thường a, b, c, ….

Chú ý: Đôi khi, để ngắn gọn, người ta dùng từ “tập” thay cho “tập hợp”.

– Để chỉ a là một phần tử của tập hợp A, ta viết a ∈ A (đọc là “a thuộc A”). Để chỉ a không là phần tử của tập hợp A, ta viết a ∉ A (đọc là “a không thuộc A”).

Ví dụ 1.

+ Để chỉ 5 là phần tử của tập số tự nhiên ℕ, ta viết 5 ∈ ℕ.

+ Để chỉ – 1 không là phần tử của tập số tự nhiên ℕ, ta viết -1 ∉ ℕ.

– Một tập hợp có thể không chứa phần tử nào. Tập hợp như vậy gọi là tập rỗng, kí hiệu ∅.

– Người ta thường kí hiệu các tập hợp số như sau: ℕ là tập hợp các số tự nhiên, ℤ là tập hợp các số nguyên, ℚ là tập hợp các số hữu tỉ, ℝ là tập hợp các số thực.

Ví dụ 2. Muốn kí hiệu phần tử 5 thuộc tập số tự nhiên, ta kí hiệu: 5 ∈ ℕ.

*Cách xác định tập hợp

Cách 1. Liệt kê các phần tử của tập hợp;

Cách 2. Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

Chú ý: Khi liệt kê các phần tử của tập hợp, ta có một số chú ý sau đây:

+ Các phần tử có thể được viết theo thứ tự tùy ý.

+ Mỗi phần tử chỉ được liệt kê một lần.

+ Nếu quy tắc xác định các phần tử đủ rõ thì người ta dùng “…” mà không nhất thiết viết ra tất cả các phần tử của tập hợp.

– Có những tập hợp ta có thể đếm hết các phần tử của chúng. Những tập hợp như vậy được gọi là tập hợp hữu hạn.

Ví dụ 3. Cho tập hợp D các số tự nhiên chia hết cho 3 và lớn hơn 3 nhưng nhỏ hơn 10. Mô tả tập hợp D theo hai cách:

Cách 1: Liệt kê phẩn tử tập hợp: D = {6; 9}.

Cách 2: Chỉ ra tính chất đặc trưng của các phẩn tử: D = {n ∈ ℕ | n ⋮ 3, 3 < n < 10}.

2. Tập con và hai tập hợp bằng nhau

– Cho hai tập hợp A và B. Nếu mọi phần tử của A đều là phần tử của B thì ta nói tập hợp A là tập con của tập hợp B và kí hiệu A ⊂ B (đọc là A chứa trong B), hoặc B ⊃ A (đọc là B chứa A).

Nhận xét:

+ A ⊂ A và ∅ ⊂ A với mọi tập hợp A.

+ Nếu A không phải là tập con của B thì ta kí hiệu A ⊄ B (đọc là A không chứa trong B hoặc B không chứa A).

+ Nếu A ⊂ B hoặc B ⊂ A thì ta nói A và B có quan hệ bao hàm.

– Trong toán học, người ta thường minh họa một tập hợp bằng một hình phẳng được bao quanh bởi một đường cong kín, gọi là biểu đồ Ven.

Chú ý: Giữa các tập hợp số quen thuộc (tập số tự nhiên, tập số nguyên, tập số hữu tỉ, tập số thực), ta có quan hệ bao hàm:  ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ.

Ví dụ 4. Cho tập hợp T = {2; 3; 5}; S = {2; 3; 5; 7; 9}; M = {2; 3; 4; 5}.

+ Tập hợp T là tập con của tập hợp S vì tất cả phần tử của T đều có trong phần tử của S.

+ Tập hợp M không là tập hợp con của tập hợp S vì tập M có phần tử 4 không thuộc S.

– Hai tập hợp A và B được gọi là bằng nhau, kí hiệu A = B, nếu A ⊂ B và B ⊂ A.

Ví dụ 5. Cho 2 tập hợp: T = {n ∈ ℕ | n ⋮ 9, 7 < n < 14} và S = {n ∈ ℕ | n ⋮ 3, 8 < n < 10}.

Tìm các phần tử của T và S ta có T = {9} và S = {9} nên T = S.

3. Một số tập con của tập hợp số thực

– Ta thường sử dụng các tập con của tập số thực sau đây (a và b là các số thực, a < b):




Tên gọi và kí hiệu



Tập hợp



Biểu diễn trên trục số





Tập số thực (-∞; +∞)



ℝ






Đoạn [a; b]



{x ∈ ℝ | a ≤  x ≤ b}







Khoảng (a; b)



{x ∈ ℝ | a < x < b}







Nửa khoảng [a; b)



{x ∈ ℝ | a ≤  x < b}







Nửa khoảng (a; b]



{x ∈ ℝ | a < x ≤ b}







Nửa khoảng (-∞; a]



{x ∈ ℝ |  x ≤ a}







Nửa khoảng [a; +∞)



{x ∈ ℝ | x ≥ a}







Khoảng (-∞; a)



{x ∈ ℝ | x < a}







Khoảng (a; +∞)



{x ∈ ℝ | x > a}






– Trong các kí hiệu trên, kí hiệu – ∞ đọc là âm vô cực (âm vô cùng), kí hiệu + ∞ đọc là dương vô cực (dương vô cùng).

Ví dụ 6.

Cho x thỏa mãn 2 < x ≤ 6 thì ta kí hiệu x ∈ (2; 6].

Cho x thỏa mãn x ≥ 7 thì ta kí hiệu x ∈ [7; +∞).

B. Bài tập tự luyện

Bài 1. Hãy viết tập hợp sau bằng cách nêu tính chất đặc trưng cho các phần tử của tập hợp:

a) A = {0; 4; 8; 12}.

b) B = {15; 24; 35; 48}.

Hướng dẫn giải

a) A = {x ∈ ℕ | x ⋮ 4, x < 13}.

b) B = {n ∈ ℕ | n2 – 1, 3 < n < 8}.

Bài 2. Hãy viết tập hợp sau bằng cách liệt kê các phần tử:

a) A = {x2 – 1 | x ∈ ℤ, ‒1 < x < 2};

b) B = {x ∈ ℕ | x ⋮ 5, x < 50}.

Hướng dẫn giải

a) A = {1; 0}.

b) B = {0; 5; 10; 15; 20; 25; 30; 35; 40; 45}.

Bài 3. Cho A = {2; 6; 4; 5}, B = {2; x}, C = {6; y}, D = {m, n}. Tìm x, y, m, n (nếu có) để:

a) B = C = D.

b) C = D ⊂ A và y > 3.

c) B = D ⊄ A và 1 < x < 7.

Hướng dẫn giải

a) Để B = C thì tập B phải có phần tử 6 và tập C phải có phần tử 2.

Do đó x = 6 và y = 2. Khi đó B = C = {2; 6}.

Để D = B = C thì D = {2; 6}. Vậy m = 6, n = 2 hoặc m = 2, n = 6.

b) Để C ⊂ A thì tập C có các phần tử giống phần tử nằm trong tập A.

Suy ra y có thể bằng 2; 4; 5. Mà y > 3 nên y chỉ có thể bằng 4 hoặc 5.

+ Nếu y = 4 thì để D = C thì C = D = {4; 6}. Vậy m = 4, n = 6 hoặc m = 6, n = 4.

+ Nếu y = 5 thì để D = C thì C = D = {5; 6}. Vậy m = 5, n = 6 hoặc m = 6, n = 5.

c) Để B ⊄ A thì x phải khác các phần tử 2; 6; 5; 4. Mà 1 < x < 7.

Suy ra x = 3. Khi đó B = {2; 3}.

Ta có D = B = {2; 3}. Vậy m = 2, n = 3 hoặc m = 3, n = 2.

Bài 4. Dùng kí hiệu đoạn, khoảng, nửa khoảng viết tập hợp sau và vẽ chúng trên trục số:

a) {x ∈ ℝ | 7 < x ≤ 12}.

b) {x ∈ ℝ | x ≤ ‒ 5}.

Hướng dẫn giải

a) Kí hiệu: (7; 12]. Biểu diễn trên trục số:

b) Kí hiệu: (‒∞; ‒5]. Biểu diễn trên trục số:

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hình nón có thiết diện qua trục là một tam giác đều cạnh là 2a, có thể tích V1 và hình cầu có đường kính bằng chiều cao hình nón, có thể tích V2. Khi đó tỉ số thể tích V1V2 bằng bao nhiêu?

Next post

Cho tam giác đều ABC nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm của BC. Khi quay tam giác ABM cùng với nửa hình tròn đường kính AA’ xung quanh đường thẳng AM, ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỷ số V1V2 bằng

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  3. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  4. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  5. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  8. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  9. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  10. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  11. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  12. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  13. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  14. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  15. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  16. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  17. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  18. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  19. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  20. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  21. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  22. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  24. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  25. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  26. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  27. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  28. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  29. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  30. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  31. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  32. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  33. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  34. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán