Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố

A. Lý thuyết Xác suất của biến cố

1. Xác suất của biến cố

– Giả sử một phép thử có không gian mẫu Ω gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố.

Xác suất của biến cố A là một số, kí hiệu là P(A), được xác định bởi công thức:

P(A) = nAnΩ   

Trong đó n(A) và n(Ω) lần lượt là kí hiệu số phần tử của tập A và Ω .

Chú ý:

+ Định nghĩa trên được gọi là định nghĩa cổ điển của xác suất.

+ Với mọi biến cố A, 0 ≤ P(A) ≤ 1.

+ P(Ω) = 1, P(∅) = 0.

+ Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 1.

Ví dụ: Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Tính xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ”.

Hướng dẫn giải

– Tính số phần tử của không gian mẫu:

Lấy 3 viên bi ngẫu nhiên trong 8 viên bi có C83  cách.

Do đó số phần tử của không gian mẫu là n(Ω) = C83 = 56.

– Tính số kết quả thuận lợi cho biến cố A:

Lấy được 3 viên bi màu đỏ trong số 5 viên bi màu đỏ có C53  cách.

Do đó, số kết quả thuận lợi cho biến cố A là n(A) = C53  = 10.

Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

P(A) = nAnΩ  =1056=528

Vậy xác suất của biến cố A là P(A) = 528 .

2. Tính xác suất bằng sơ đồ hình cây

– Trong chương VIII, chúng ta đã được làm quen với phương pháp sử dụng sơ đồ hình cây để liệt kê các kết quả của một thí nghiệm. Ta cũng có thể sử dụng sơ đồ hình cây để tính xác suất

Ví dụ: Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Tính xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt ngửa”.

Hướng dẫn giải

Kí hiệu S nếu tung được mặt sấp, N nếu tung được mặt ngửa.

Các kết quả có thể xảy ra trong 3 lần tung được thể hiện trong sơ đồ hình cây dưới đây:

Có tất cả 8 kết quả xảy ra, trong đó có 7 kết quả thuận lợi cho biến cố A.

Do đó:

P(A) = 78 .

3. Biến cố đối

– Cho A là một biến cố. Khi đó biến cố “Không xảy ra A”, kí hiệu là A¯ , được gọi là biến cố đối của A.

A¯=Ω\A; PA¯  + P(A) = 1.

Ví dụ: Trong giỏ có 3 quả cam, 4 quả táo và 2 quả đào. Lấy ngẫu nhiên từ trong giỏ ra 4 quả. Tính xác suất để trong 4 quả lấy ra có ít nhất 1 quả táo.

Hướng dẫn giải

Gọi A là biến cố “Trong 4 quả lấy ra có ít nhất 1 quả táo”.

Thì biến cố đối của A là A¯ : “Trong 4 quả lấy ra không có quả táo nào”.

Ta sẽ tính xác suất của biến cố A¯ :

Lấy 4 quả trong tổng số 3 + 4 + 2 = 9 quả có  cách.

Do đó, số phần tử của không gian mẫu là nΩ= C94  = 126.

Lấy 4 quả trong số 5 quả cam và đào thì có C54cách.

Do đó, số kết quả thuận lợi cho biến cố A¯ là: n(A¯) = C54 = 5.

Xác suất của biến cố A¯  là: P(A¯) =nA¯nΩ=5126

Suy ra xác suất của biến cố A là:

P(A) = 1 – PA¯ =121126.

4. Nguyên lí xác suất bé

Trong thực tế, các biến cố có xác suất xảy ra gần bằng 1 thì gần như là luôn xảy ra trong một phép thử. Ngược lại, các biến cố mà xác suất xảy ra gần bằng 0 thi gần như không xảy ra trong một phép thử.

Trong Lí thuyết Xác suất, Nguyên lí xác suất bé được phát biểu như sau:

Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

Ví dụ: Khi một con tàu lưu thông trên biển, xác suất nó bị đắm là số dương. Tuy nhiên, nếu tuân thủ các quy tắc an toàn thi xác suất xảy ra biển cố này là rất nhỏ, con tàu có thể yên tâm hoạt động.

Nếu một nhà sản xuất tuyên bố tỉ lệ gây sốc phản vệ nặng khi tiêm một loại vắc xin là rất nhỏ, chỉ khoảng 0,001, thì có thể tiêm vắc xin đó cho mọi người được không? Câu trả lời là không, vì sức khoẻ và tính mạng con người là vô giá, nếu tiêm loại vắc xin đó cho hàng tỉ người thì khả năng có nhiều người bị sốc phản vệ nặng là rất cao.

B. Bài tập tự luyện

Bài 1. Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Tính xác suất để 3 viên bi lấy ra đều màu đỏ.

Hướng dẫn giải

Gọi biến cố A: “3 viên bi lấy ra đều màu đỏ”.

Số cách lấy 3 viên bi từ 20 viên bi là: C203 .

Do đó số phần tử của không gian mẫu là: nΩ= C203 = 1140.

Lấy 3 viên bi màu đỏ từ 8 viên bi đỏ là: C83.

Số kết quả thuận lợi cho biến cố A là: n(A) = C83 = 56.

Xác suất của biến cố A: “3 viên bi lấy ra đều màu đỏ” là:

P(A) =nAnΩ=561140=14285 .

Vậy xác suất để 3 viên bi lấy ra đều màu đỏ là 14285.

Bài 2. Bạn Nam có 3 chiếc ảnh giấy. Nam tung lần lượt từng chiếc ảnh lên để rơi trên bàn. Tính xác suất để sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa. (Tính theo phương pháp sơ đồ hình cây).

Hướng dẫn giải

Gọi A là biến cố “Sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa”.

Kí hiệu S nếu Nam tung được mặt sấp, N nếu Nam tung được mặt ngửa.

Các kết quả có thể xảy ra trong 3 lần tung được thể hiện trong sơ đồ hình cây dưới đây:

Có tất cả 8 kết quả xảy ra, trong đó có 3 kết quả thuận lợi cho biến cố A.

Do đó: P(A) =38  

Vậy xác suất để sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa là 38

Bài 3. Chọn ngẫu nhiên ba số tự nhiên trong các số tự nhiên từ 1 đến 50. Tính xác suất của biến cố B: “Trong ba số có một số là số chính phương, hai số còn lại chia hết cho 5”.

Hướng dẫn giải

Từ 1 đến 50 có 50 số tự nhiên.

Chọn ngẫu nhiên 3 số tự nhiên trong 50 số ta có C503  cách.

Do đó số phần tử của không gian mẫu là: nΩ= C503  = 19 600.

Từ 1 đến 50 có các số chính phương là: 1, 4, 9, 16, 25, 36, 49 (7 số).

Từ 1 đến 50 có các số chia hết cho 5 là: 5; 10; 15; 20; 25; 30; 35; 40; 45; 50 (10 số).

Chọn 1 số trong 7 số chính phương có C71  cách.

Chọn 2 số trong 10 số chính phương có C102  cách.

Theo quy tắc nhân, số kết quả thuận lợi cho biến cố B là:

n(B) = C71 .C102  = 315.

Xác suất của biến cố B là: P(B) = nBnΩ=31519600=9560 .

Vậy xác suất của biến cố B: “Trong ba số có một số là số chính phương, hai số còn lại chia hết cho 5” là

Bài 4. Ngân hàng đề thi môn Toán gồm 100 câu hỏi chỉ nằm trong 2 chương I và II. Thầy giáo chọn 10 câu hỏi để ra đề. Tính xác suất để thầy giáo chọn ít nhất 1 câu trong chương I, biết số câu hỏi của chương I gấp 3 lần số câu hỏi chương II.

Hướng dẫn giải

Số câu hỏi của chương I gấp 3 lần số câu hỏi chương II mà tổng số câu hỏi của 2 chương là 100 nên số câu hỏi của chương I là 75 câu và số câu hỏi của chương II là 25 câu.

Thầy giáo chọn 10 câu hỏi trong 100 câu hỏi có C10010 cách.

Do đó số phần tử của không gian mẫu là nΩ=C10010 .

Gọi A là biến cố: “Thầy giáo chọn ít nhất 1 câu trong chương I”.

Suy ra biến cố A¯ là: “Thầy giáo không chọn câu nào trong chương I”.

Chọn 10 câu hỏi trong 25 câu hỏi của chương II có C2510  cách.

Do đó sối kết quả thuận lợi cho biến cố A¯  là: n(A¯)= C2510 .

Xác suất của biến cố A¯  là: PA¯=nA¯nΩ=C2510C10010  

Xác suất của biến cố A là:

P(A) = 1 – PA¯ = 1 – C2510C10010  ≈ 0,9999998112.

Vậy xác suất để thầy giáo chọn ít nhất 1 câu trong chương I là khoảng 0,9999998112.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hình cầu có bán kính R. Khi đó thể tích khối cầu là

Next post

Diện tích mặt cầu có bán kính R là

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  8. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  9. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  10. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  11. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  12. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  13. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  14. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  15. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  21. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  22. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  24. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  25. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  26. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  27. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  28. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  29. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  30. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  31. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  32. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  33. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  34. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  37. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  38. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán