Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

A. Lý thuyết Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

1. Số trung bình

1.1. Công thức tính số trung bình

• Giả sử ta có một mẫu số liệu là x1, x­2, …, xn.

Số trung bình (hay số trung bình cộng) của mẫu số liệu này, kí hiệu là x¯ , được tính bởi công thức

x¯=x1+x2+…+xnn.

• Giả sử mẫu số liệu được cho dưới dạng bảng tần số




Giá trị



x1



x2



…



xk





Tần số



n1



n2



…



nk




Khi đó, công thức tính số trung bình trở thành

x¯=n1x1+n2x2+…+nkxkn.

Trong đó n = n1 + n2 + … + nk. Ta gọi n là cỡ mẫu.

Chú ý: Nếu kí hiệu fk=nkn là tần số tương đối (hay còn gọi là tần suất) của xk­ trong mẫu số liệu thì số trung bình còn có thể biểu diễn là: x¯=f1x1+f2x2+…+fkxk.

Ví dụ: Điểm số bài thực hành môn Toán của các bạn học sinh trong nhóm A là 10; 5; 7; 9; 8; 6, còn của các bạn nhóm B là 9; 9; 8; 7; 6; 8. Tính điểm trung bình của mỗi nhóm.

Hướng dẫn giải

Điểm trung bình của nhóm A là: 1610+5+7+9+8+6=7,5 .

Điểm trung bình của nhóm B là: 169+9+8+7+6+8≈7,83 .

1.2.Ý nghĩa của số trung bình

Số trung bình của mẫu số liệu được dùng làm đại diện cho các số liệu của mẫu. Nó là một số đo xu thế trung tâm của mẫu đó.

Ví dụ: Ở trong Ví dụ thuộc phần 1.1. trên, ta thấy điểm số trung bình của nhóm B cao hơn nhóm A (7,83 > 7,5), ta có thể nói rằng thành tích thực hành của nhóm B tốt hơn nhóm A.

2. Trung vị và tứ phân vị

2.1. Trung vị

2.1.1 Định nghĩa và cách tính số trung vị

Khi các số liệu trong mẫu số liệu chênh lệch nhau quá lớn, ta dùng một đặc trưng khác của mẫu số liệu, gọi là trung vị để so sánh các mẫu số liệu với nhau.

Trung vị được định nghĩa như sau:

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x1 ≤ x2 ≤ … ≤ xn.

Trung vị của mẫu, kí hiệu là Me, là giá trị ở chính giữa dãy x1, x­­2, …, xn. Cụ thể:

– Nếu n = 2k + 1, (tức n là số tự nhiên lẻ), thì trung vị của mẫu Me = xk + 1.

– Nếu n = 2k,  (tức n là số tự nhiên chẵn), thì trung vị của mẫu Me = 12xk+xk+1 .

Ví dụ: Tính các trung vị của điểm thực hành môn Toán của các bạn học sinh trong nhóm A và nhóm B trong Ví dụ thuộc phần 1.1.

Hướng dẫn giải

+ Sắp xếp điểm số của mỗi bạn trong nhóm A theo thứ tự không giảm, ta được:

5; 6; 7; 8; 9; 10

Vì cỡ mẫu bằng 6 nên trung vị của nhóm A là trung bình cộng của số liệu thứ 3 và thứ 4 của dãy trên, tức là Me = 127+8=7,5 .

+ Sắp xếp điểm số của mỗi bạn trong nhóm B theo thứ tự không giảm, ta được:

 6; 7; 8; 8; 9; 9

Vì cỡ mẫu bằng 6 nên trung vị của nhóm B là trung bình cộng của số liệu thứ 3 và thứ 4 của dãy trên, tức là Me = 128+8=8 .

2.1.2 Ý nghĩa của số trung vị

Trung vị được dùng để đo xu thế trung tâm của mẫu số liệu. Trung vị là giá trị nằm ở chính giữa của mẫu số liệu theo nghĩa: luôn có ít nhất 50% số liệu trong mẫu lớn hơn hoặc bằng trung vị và ít nhất 50% số liệu trong mẫu nhỏ hơn hoặc bằng trung vị. Khi trong mẫu xuất hiện thêm một giá trị rất lớn hoặc rất nhỏ thì số trung bình sẽ bị thay đổi đáng kể nhưng trung vị thì ít thay đổi.

Ví dụ: Bảng sau thống kê số sách mỗi bạn học sinh Tổ 1 và Tổ 2 đã đọc ở thư viện trường trong một tháng:

a) Trung bình mỗi bạn Tổ 1 và mỗi bạn Tổ 2 đọc bao nhiêu quyển sách ở thư viện trường trong tháng đó?

b) Em hãy thảo luận với các bạn trong nhóm xem tổ nào chăm đọc sách ở thư viện hơn.

Hướng dẫn giải

a) Trung bình mỗi bạn Tổ 1 đọc số quyển sách ở thư viện trong tháng trên là:

3+1+2+1+2+2+3+25+19=409≈4,4.

Trung bình mỗi bạn Tổ 2 đọc số quyển số ở thư viện trong tháng trên là:

4+5+4+3+3+4+5+48=328=4.

b) Vì 4,4 > 4 nên theo số trung bình, các bạn Tổ 1 đọc sách chăm hơn.

Nếu dựa vào số trung bình để đánh giá xem tổ nào chăm đọc sách hơn trong bài này thì không phù hợp, do có một số liệu trong mẫu số liệu của Tổ 1 quá lớn so với các số liệu còn lại. Ta sử dụng trung vị để so sánh độ chăm học giữa hai tổ.

+ Sắp xếp mẫu số liệu theo thứ tự không giảm của Tổ 1:

1; 1; 1; 2; 2; 2; 3; 3; 25

Vì cỡ mẫu n1 = 9 là số lẻ, nên trung vị của mẫu số liệu Tổ 1 là Me1 = 2.

+ Sắp xếp mẫu số liệu theo thứ tự không giảm của Tổ 2:

3; 3; 4; 4; 4; 4; 5; 5

Vì cỡ mẫu n2 = 8 là số chẵn, nên trung vị của mẫu số liệu Tổ 2 là Me2 = 124+4=4 .

Do đó ta có: Me2 > Me1.

Vậy theo trung vị, các bạn Tổ 2 chăm đọc sách ở thư viện hơn Tổ 1.

2.2. Tứ phân vị

• Trung vị chia mẫu thành hai phần. Trong thực tế người ta cũng quan tâm đến trung vị của mỗi phần đó. Ba trung vị này được gọi là tứ phân vị của mẫu.

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x1 ≤ x2 ≤ … ≤ xn.

Tứ phân vị của một mẫu số liệu gồm ba giá trị, gọi là tứ phân vị thứ nhất, thứ hai và thứ ba (lần lượt kí hiệu là Q1, Q2, Q­3). Ba giá trị này chia tập hợp dữ liệu đã sắp xếp thành bốn phần đều nhau. Cụ thể:

– Giá trị tứ phân vị thứ hai, Q2, chính là số trung vị của mẫu.

– Giá trị tứ phân vị thứ nhất, Q1, là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ).

– Giá trị tứ phân vị thứ ba, Q3, là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ).

• Ý nghĩa của tứ phân vị

Các điểm tứ phân vị Q1, Q2, Q3 chia mẫu số liệu đã sắp xếp theo thứ tự từ nhỏ đến lớn thành bốn phần, mỗi phần chia khoảng 25% tổng số liệu đã thu thập được.

Tứ phân vị thứ nhất Q1 còn được gọi là tứ phân vị dưới và đại diện cho nửa mẫu số liệu phía dưới. Tứ phân vị thứ ba Q3, còn được gọi là tứ phân vị trên và đại diện cho nửa mẫu số liệu ở phía trên.

Ví dụ: Tìm tứ phân vị của mẫu số liệu sau: 3; 5; 6; 13; 25; 17; 19.

Hướng dẫn giải

Sắp xếp các số liệu theo thứ tự không giảm ta được:

3; 5; 6; 13; 17; 19; 25.

Vì cỡ mẫu n = 7, là số lẻ, nên giá trị tứ phân vị thứ hai là Q2 = 13.

Tứ phân vị thứ nhất là trung vị của mẫu: 3; 5; 6. Do đó Q1 = 5.

Tứ phân vị thứ ba là trung vị của mẫu: 17; 19; 25. Do đó Q3 = 19.

3. Mốt

Cho mẫu số liệu dưới dạng bảng tần số. Giá trị có tần số lớn nhất được gọi là mốt của mẫu số liệu và kí hiệu là Mo.

Ý nghĩa của mốt: Mốt đặc trưng cho giá trị xuất hiện nhiều nhất trong mẫu.

Chú ý: Một mẫu số liệu có thể có rất nhiều mốt. Khi tất cả các giá trị trong mẫu số liệu có tần số xuất hiện bằng nhau thì mẫu số liệu đó không có mốt.

Ví dụ: Cho mẫu số liệu:




Giá trị



35



38



40



45





Tần số



10



5



6



3




Ta thấy giá trị 35 có tần số lớn nhất, do đó, mốt của mẫu số liệu trên là Mo = 35.

B. Bài tập tự luyện

Bài 1. Hãy tìm số trung bình, tứ phân vị và mốt của mẫu số liệu sau:

56; 45; 65; 45; 56; 78; 100; 78; 78.

Hướng dẫn giải

Cỡ mẫu: n = 9.

Số trung bình: x¯=1956+45+65+45+56+78+100+78+78≈66,78 .

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

45; 45; 56; 56; 65; 78; 78; 78; 100.

Vì cỡ mẫu là 9, là số lẻ nên tứ phân vị thứ hai là Q2 = 65.

Tứ phân vị thứ nhất là trung vị của mẫu: 45; 45; 56; 56. Do đó Q1 = 1245+56 = 50,5.

Tứ phân vị thứ ba là trung vị của mẫu: 78; 78; 78; 100. Do đó Q3 = 1278+78 = 78.

Giá trị 78 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 78.

Bài 2. Hãy tìm số trung bình, trung vị và mốt của mẫu số liệu sau:




Giá trị



20



25



30



35





Tần số



2



3



5



7




Hướng dẫn giải

Cỡ mẫu n = 2 + 3 + 5 + 7 = 17.

Số trung bình: x¯=1172.20+3.25+5.30+7.35=30 .

Sắp xếp các số liệu đã cho theo thứ tự không giảm, ta được:

20; 20; 25; 25; 25; 30; 30; 30; 30; 30; 35; 35; 35; 35; 35; 35; 35.

Vì cỡ mẫu là 17 là số lẻ nên trung vị là Me = 30.

Giá trị 35 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 35.

Bài 3. Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí sinh ở bảng sau: 




Thời gian (đơn vị: phút)



5



6



7



8



35





Số thí sinh



1



3



5



2



1




a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.

b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.

Hướng dẫn giải

a) Cỡ mẫu là n = 1 + 3 + 5 + 2 + 1 = 12.

Số trung bình là: x¯=1.5+3.6+5.7+2.8+1.3512≈9,08 .

Số thí sinh là trong thời gian 7 phút là nhiều nhất nên mốt của mẫu là Mo = 7.

Sắp xếp các giá trị của mẫu theo thứ tự không giảm, ta được:

5; 6; 6; 6; 7; 7; 7; 7; 7; 8; 8; 35.

Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 127+7=7 .

Tứ phân vị thứ nhất là trung vị của mẫu: 5; 6; 6; 6; 7; 7. Do đó Q1 = 6.

Tứ phân vị thứ ba là trung vị của mẫu: 7; 7; 7; 8; 8; 35. Do đó Q3 = 7,5.

b) Dựa theo số trung bình, vì 9,08 > 7 nên thời gian thi của các thí sinh năm nay nhiều hơn năm ngoái.

Dựa theo trung vị, thì cả hai năm trung vị đều bằng nhau và bằng 7 nên thời gian của các thí sinh trong hai năm là ngang nhau.

Vì trong mẫu số liệu của năm nay có số liệu 35 lớn hơn so với các số liệu còn lại rất nhiều, do đó ta dùng trung vị để so sánh sẽ phù hợp hơn.

Vậy thời gian thi nói chung của các thí sinh trong hai năm là ngang nhau. 

Bài 4. Người ta đã tiến hành thăm dò ý kiến của khách hàng về các mẫu 1, 2, 3, 4 của một loại sản phẩm mới được sản xuất ở nhà máy. Dưới đây là bảng phân bố tần số theo số phiếu bình chọn tín nhiệm cho các mẫu kể trên.




Mẫu



1



2



3



4



Cộng





Tần số



195



300



356



149



1000




 a) Tìm mốt của mẫu số liệu.

b) Trong sản xuất, nhà máy nên ưu tiên cho mẫu nào?

Hướng dẫn giải

a) Quan sát bảng tần số ta thấy mẫu 3 có tần số lớn nhất nên mốt của mẫu số liệu đã cho là Mo = 3.

b) Vì Mo = 3 nên trong sản xuất, nhà máy nên ưu tiên cho mẫu 3.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hình chóp S.ABC có đáy là hình vuông cạnh a, SA=a2 và vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm cạnh SC. Mặt phẳng α qua A và M đồng thời song song với đường thẳng BD cắt SB, SD lần lượt tại E, F. Bán kính mặt cầu đi qua 5 điểm S, A, E, M, F nhận giá trị nào sau đây?

Next post

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AC=a3,ACB^=30o. Góc giữa đường thẳng AB’ và mặt phẳng (ABC) bằng 60°. Bán kính mặt cầu ngoại tiếp tứ diện A’ABC bằng

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  8. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  9. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  10. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  11. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  12. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  13. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  14. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  15. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  21. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  22. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  24. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  25. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  26. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  27. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  28. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  29. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  30. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  31. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  32. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  33. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  34. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán