Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ

A. Lý thuyết Đường tròn trong mặt phẳng tọa độ

1. Phương trình đường tròn

Trong mặt phẳng Oxy, cho đường tròn (C) tâm I(a; b), bán kính R.

Phương trình (x – a)2 + (y – b)2 = R2 được gọi là phương trình đường tròn tâm I(a; b), bán kính R.

Ví dụ: Viết phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm I(2; –3), bán kính R = 2.

b) (C) có đường kính AB với A(1; 6), B(–3; 2).

c) (C) đi qua ba điểm A(–2; 4), B(5; 5), C(6; –2).

Hướng dẫn giải

a) Đường tròn (C) có tâm I(2; –3), bán kính R = 2.

Vậy phương trình đường tròn (C): (x – 2)2 +(y + 3)2 = 4.

b) Gọi I(a; b) là tâm của đường tròn (C).

Vì đường tròn (C) có tâm I(a; b) và đường kính AB nên I là trung điểm AB.

Với A(1; 6), B(–3; 2).

Suy ra a=xA+xB2=1−32=−1b=yA+yB2=6+22=4

Khi đó ta có tọa độ I(–1; 4).

Ta có IA→=2;2.

Suy ra R=IA=IA→=22+22=22.

Đường tròn (C) có tâm I(–1; 4), bán kính R=22.

Vậy phương trình đường tròn (C): (x + 1)2 + (y – 4)2 = 8.

c) Gọi M, N lần lượt là trung điểm của AB, AC.

Ta có M là trung điểm AB với A(–2; 4), B(5; 5).

Suy ra xM=xA+xB2=−2+52=32yM=yA+yB2=4+52=92

Khi đó ta có M32;92.

Tương tự, ta có N(2; 1).

Với A(–2; 4), B(5; 5), C(6; –2) ta có AB→=7;1,  AC→=8;−6.

Đường trung trực d1 của đoạn thẳng AB đi qua điểm M32;92, có vectơ pháp tuyến AB→=7;1.

Suy ra phương trình d1: 7x−32+1y−92=0⇔7x+y−15=0.

Tương tự, ta có phương trình đường trung trực d2 của đoạn thẳng AC:

8(x – 2) – 6(y – 1) = 0 ⇔ 4x – 3y – 5 = 0.

Vì đường tròn (C) có tâm I(a; b) và (C) đi qua ba điểm A, B, C nên IA = IB = IC (= R).

Vì IA = IB nên I nằm trên đường trung trực d1 của đoạn thẳng AB.

Tương tự, ta có I nằm trên đường trung trực d2 của đoạn thẳng AC.

Vì vậy ta suy ra I là giao điểm của d1 và d2.

Khi đó tọa độ điểm I là nghiệm của hệ phương trình:

7x+y−15=04x−3y−5=0⇔x=2y=1

Suy ra I(2; 1).

Với I(2; 1) và A(–2; 4) ta có IA→=−4;3.

Suy ra R=IA=IA→=−42+32=5.

Vậy phương trình đường tròn (C): (x – 2)2 + (y – 1)2 = 25.

Ví dụ: Tìm tâm và bán kính của đường tròn (C) có phương trình trong mỗi trường hợp sau:

a) (x – 4)2 + (y – 10)2 = 9.

b) (x + 2)2 + (y – 5)2 = 64.

c) x2 + (y – 1)2 = 36.

Hướng dẫn giải

a) (x – 4)2 + (y – 10)2 = 9

Đường tròn (C) có tâm I(4; 10), bán kính R=9=3.

b) (x + 2)2 + (y – 5)2 = 64

Đường tròn (C) có tâm I(–2; 5), bán kính R=64=8.

c) x2 + (y – 1)2 = 36.

Đường tròn (C) có tâm I(0; 1), bán kính R=36=6.

Nhận xét: Ta có (x – a)2 + (y – b)2 = R2

⇔ x2 + y2 – 2ax – 2by + (a2 + b2 – R2) = 0.

Vậy phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể được viết dưới dạng x2 + y2 – 2ax – 2by + c = 0, trong đó c = a2 + b2 – R2.

Ngược lại, phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi và chỉ khi a2 + b2 – c > 0. Khi đó đường tròn (C) có tâm I(a; b) và bán kính R=a2+b2−c.

Ví dụ: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Nếu là phương trình đường tròn, hãy tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 + 2x – 6y – 15 = 0.

b) 2x2 + 2y2 + 4x + 8y + 14 = 0.

Hướng dẫn giải

a) Phương trình đã cho có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = –1, b = 3, c = –15.

Ta có a2 + b2 – c = 1 + 9 + 15 = 25 > 0.

Vậy phương trình đã cho là phương trình đường tròn có tâm I(–1; 3), bán kính R = 5.

b) Ta có 2x2 + 2y2 + 4x + 8y + 14 = 0 ⇔ x2 + y2 + 2x + 4y + 7 = 0.

Phương trình trên có dạng x2 + y2 – 2ax – 2by + c = 0, với a = –1, b = –2, c = 7.

Ta có a2 + b2 – c = 1 + 4 – 7 = –2 < 0.

Vậy phương trình đã cho không phải là phương trình đường tròn.

2. Phương trình tiếp tuyến của đường tròn

Phương trình tiếp tuyến của đường tròn tâm I(a; b) tại điểm M0(x0; y0) nằm trên đường tròn là:

(a – x0)(x – x0) + (b – y0)(y – y0) = 0.

Ví dụ: Viết phương trình tiếp tuyến d của đường tròn (C): (x – 2)2 + (y + 3)2 = 5 tại điểm M(3; –1).

Hướng dẫn giải

Ta có (3 – 2)2 + (–1 + 3)2 = 5.

Suy ra M ∈ (C).

Đường tròn (C) có tâm I(2; –3).

Phương trình tiếp tuyến d của đường tròn (C) tại điểm M(3; –1) là:

(2 – 3)(x – 3) + [–3 – (–1)].[y – (–1)] = 0.

⇔ –1.(x – 3) + (–2).(y + 1) = 0.

⇔ –x – 2y + 1 = 0.

Vậy phương trình tiếp tuyến d của đường tròn (C) cần tìm là –x – 2y + 1 = 0.

B. Bài tập tự luyện

Bài 1. Lập phương trình đường tròn (C) trong các trường hợp sau:

a) (C) đi qua ba điểm A(–1; 3), B(1; 4), C(3; 2).

b) (C) có tâm I(–1; 2) và tiếp xúc với đường thẳng ∆: x – 2y + 7 = 0.

c) (C) có tâm thuộc đường thẳng d: 2x – y – 5 = 0 và đi qua hai điểm A(1; 2), B(4; 1).

Hướng dẫn giải

a) Gọi M, N lần lượt là trung điểm của AB, AC.

Ta có M là trung điểm AB với A(–1; 3), B(1; 4).

Suy ra xM=xA+xB2=−1+12=0yM=yA+yB2=3+42=72

Khi đó ta có M0;72.

Tương tự, ta có N1;52.

Với A(–1; 3), B(1; 4), C(3; 2) ta có AB→=2;1,  AC→=4;−1.

Đường trung trực d1 của đoạn thẳng AB đi qua điểm M0;72, có vectơ pháp tuyến AB→=2;1.

Suy ra phương trình d1: 2x−0+1y−72=0⇔2x+y−72=0.

Tương tự, ta có phương trình đường trung trực d2 của đoạn thẳng AC:

4x−1−1y−52=0⇔4x−y−32=0.

Vì đường tròn (C) có tâm I(a; b) và (C) đi qua ba điểm A, B, C nên IA = IB = IC (= R).

Vì IA = IB nên I nằm trên đường trung trực d1 của đoạn thẳng AB.

Tương tự, ta có I nằm trên đường trung trực d2 của đoạn thẳng AC.

Vì vậy I là giao điểm của d1 và d2.

Khi đó tọa độ điểm I là nghiệm của hệ phương trình:

2x+y−72=04x−y−32=0⇔x=56y=116

Suy ra I56;116.

Với I56;116 và A(–1; 3) ta có IA→=−116;76.

Suy ra R=IA=IA→=−1162+762=1706.

Vậy phương trình đường tròn (C): x−562+y−1162=8518.

b) (C) có tâm I(–1; 2) và tiếp xúc với đường thẳng ∆: x – 2y + 7 = 0.

Vì (C) tiếp xúc với đường thẳng ∆ nên ta có:

R = d(I, ∆) = −1−2.2+712+−22=255.

Vậy phương trình đường tròn (C): x+12+y−22=45.

c) (C) có tâm thuộc đường thẳng d: 2x – y – 5 = 0 và đi qua hai điểm A(1; 2), B(4; 1).

Phương trình đường thẳng d: 2x – y – 5 = 0 ⇔ y = 2x – 5.

Giả sử I(a; b).

Vì I ∈ d nên ta có I(a; 2a – 5).

Với A(1; 2), B(4; 1) và I(a; 2a – 5) ta có:

AI→=a−1;2a−7, BI→=a−4;2a−6.

Vì đường tròn (C) đi qua hai điểm A(1; 2), B(4; 1).

Ta suy ra AI = BI (= R).

⇔ AI2 = BI2.

⇔ (a – 1)2 + (2a – 7)2 = (a – 4)2 + (2a – 6)2

⇔ a2 – 2a + 1 + 4a2 – 28a + 49 = a2 – 8a + 16 + 4a2 – 24a + 36

⇔ 2a = 2.

⇔ a = 1.

Với a = 1, ta có b = 2a – 5 = 2.1 – 5 = –3.

Suy ra I(1; –3), bán kính R = AI = 1−12+2.1−72 = 5.

Vậy phương trình đường tròn (C): (x – 1)2 + (y + 3)2 = 25.

Bài 2. Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Nếu là phương trình đường tròn, hãy tìm tâm và bán kính của đường tròn đó.

a) x2 + y2 + 2x – 4y + 9 = 0.

b) x2 + y2 – 6x + 4y + 13 = 0.

c) 2x2 + 2y2 – 6x – 4y – 1 = 0.

d) 2x2 + y2 + 2x – 3y + 9 = 0.

Hướng dẫn giải

a) Phương trình đã cho có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = –1, b = 2, c = 9.

Ta có a2 + b2 – c = 1 + 4 – 9 = –4 < 0.

Vì vậy phương trình đã cho không phải là phương trình đường tròn.

b) Phương trình đã cho có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 3, b = –2, c = 13.

Ta có a2 + b2 – c = 9 + 4 – 13 = 0.

Vì vậy phương trình đã cho không phải là phương trình đường tròn.

c) Ta có 2x2 + 2y2 – 6x – 4y – 1 = 0.

⇔x2+y2−3x−2y−12=0.

Phương trình trên có dạng: x2 + y2 – 2ax – 2by + c = 0, với a=32, b = 1, c=−12.

Ta có a2+b2−c=94+1+12=154> 0.

Vì vậy phương trình đã cho là phương trình đường tròn.

Đường tròn có tâm I32;1, bán kính R=152.

d) Phương trình đã cho không có dạng: x2 + y2 – 2ax – 2by + c = 0.

Vậy phương trình đã cho không phải là phương trình đường tròn.

Bài 3. Lập phương trình tiếp tuyến d của đường tròn (C) trong các trường hợp sau:

a) (C): x2 + y2 – 2x = 0 tại điểm M(1; 1).

b) (C): x2 + y2 – 2x + 4y + 4 = 0, biết rằng tiếp tuyến vuông góc với đường thẳng ∆: x + 2y + 5 = 0.

Hướng dẫn giải

a) Phương trình (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 1, b = c = 0.

Ta có a2 + b2 – c = 1 + 0 – 0 = 1 > 0.

Vì vậy phương trình (C) đã cho là phương trình đường tròn.

Đường tròn (C) có tâm I(1; 0).

Ta có 12 + 12 – 2.1 = 0.

Suy ra M ∈ (C).

Phương trình tiếp tuyến d của đường tròn (C) tại điểm M(3; –1) là:

(1 – 3)(x – 3) + (0 + 1).(y + 1) = 0.

⇔ –2.(x – 3) + y – 1 = 0.

⇔ –2x + y + 5 = 0.

Vậy phương trình tiếp tuyến cần tìm là –2x + y + 5 = 0.

b) Phương trình (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 1, b = –2, c = 4.

Ta có a2 + b2 – c = 1 + 4 – 4 = 1 > 0.

Vì vậy phương trình (C) đã cho là phương trình đường tròn.

Đường tròn (C) có tâm I(1; –2), bán kính R = 1.

Gọi d là tiếp tuyến cần tìm.

Gọi kd là hệ số góc của d.

Phương trình ∆: x + 2y + 5 = 0 ⇔y=−12x−52.

Suy ra ∆ có hệ số góc kΔ=−12.

Ta có d ⊥ ∆.

Suy ra kd.k∆ = –1.

⇔kd.−12=−1.

⇔ kd = 2.

Khi đó phương trình d có dạng: y = 2x + m hay 2x – y + m = 0.

Ta có d là tiếp tuyến của đường tròn (C).

Ta suy ra d(I, d) = R.

⇔2.1−−2+m22+−12=1.

⇔m+4=5

⇔m+4=5 hoặc m+4=−5

⇔m=−4+5 hoặc m=−4−5.

Vậy có 2 tiếp tuyến d thỏa yêu cầu bài toán có phương trình là 2x−y−4+5=0 và 2x−y−4−5=0.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Thể tích V của khối cầu có bán kính R=a3 là

Next post

Cho mặt cầu có tâm, bán kính. Mặt phẳng cắt mặt cầu theo giao tuyến là đường tròn có bán kính. Kết luận nào sau đây sai?

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  8. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  9. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  10. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  11. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  12. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  13. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  14. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  15. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  21. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  22. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  24. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  25. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  26. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  27. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  28. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  29. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  30. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  31. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  32. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  33. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  34. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán