Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 – Chân trời

Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.

Lý thuyết Toán lớp 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ

A. Lý thuyết Ba đường conic trong mặt phẳng tọa độ

1. Elip

1.1. Nhận biết elip

Cho hai điểm cố định F1, F2 và một độ dài không đổi 2a lớn hơn F1F2. Elip (E) là tập hợp các điểm M trong mặt phẳng sao cho F1M + F2M = 2a.

Các điểm F1 và F2 gọi là các tiêu điểm của elip.

Độ dài F1F2 = 2c gọi là tiêu cự của elip (a > c).

1.2. Phương trình chính tắc của elip

Cho elip (E) có các tiêu điểm F1 và F2 và đặt F1F2 = 2c. Chọn hệ trục tọa độ Oxy sao cho F1(–c; 0) và F2(c; 0).

Người ta chứng minh được:

Mx;y∈E⇔x2a2+y2b2=1   (1),

trong đó b=a2−c2.

Phương trình (1) gọi là phương trình chính tắc của elip.

Chú ý:

• (E) cắt Ox tại hai điểm A1(–a; 0), A2(a; 0) và cắt Oy tại hai điểm B1(0; –b), B2(0; b).

• Các điểm A1, A2, B1, B2 gọi là các đỉnh của elip.

• Đoạn thẳng A1A2 = 2a gọi là trục lớn, đoạn thẳng B1B2 = 2b gọi là trục nhỏ của elip.

• Giao điểm O của hai trục gọi là tâm đối xứng của elip.

• Nếu M(x; y) ∈ (E) thì |x| ≤ a, |y| ≥ b.

Ví dụ: Cho elip (E) có độ dài trục lớn bằng 10, tỉ số giữa tiêu cự và độ dài trục lớn là 25.

a) Tính độ dài trục nhỏ của elip.

b) Viết phương trình chính tắc của elip.

Hướng dẫn giải

a) Ta có độ dài trục lớn bằng 10. Ta suy ra 2a = 10.

Suy ra a = 5.

Theo đề, ta có tỉ số giữa tiêu cự và độ dài trục lớn là 25.

Suy ra 2c2a=25.

⇔c=25.a=25.10=4.

Ta có b=a2−c2=52−42=3.

Suy ra 2b = 2.3 = 6.

Vậy độ dài trục nhỏ của elip (E) bằng 6.

b) Ta có a = 5 và b = 3.

Phương trình chính tắc của elip (E) là: x225+y29=1.

2. Hypebol

2.1. Nhận biết hypebol

Cho hai điểm cố định F1, F2 và một độ dài không đổi 2a nhỏ hơn F1F2. Hypebol (H) là tập hợp các điểm M trong mặt phẳng sao cho |F1M – F2M| = 2a.

Các điểm F1 và F2 gọi là các tiêu điểm của hypebol.

Độ dài F1F2 = 2c gọi là tiêu cự của hypebol (c > a).

2.2. Phương trình chính tắc của hypebol

Cho hypebol (H) có các tiêu điểm F1 và F2 và đặt F1F2 = 2c. Điểm M thuộc hypebol (H) khi và chỉ khi |F1M – F2M| = 2a. Chọn hệ trục tọa độ Oxy sao cho F1(–c; 0) và F2(c; 0).

Người ta chứng minh được:

Mx;y∈H⇔x2a2−y2b2=1   (2),

trong đó b=c2−a2.

Phương trình (2) gọi là phương trình chính tắc của hypebol.

Chú ý:

• (H) cắt Ox tại hai điểm A1(–a; 0) và A2(a; 0). Nếu ta vẽ hai điểm B1(0; –b) và B2(0; b) vào hình chữ nhật OA2PB2 thì OP=a2+b2=c.

• Các điểm A1, A2 gọi là các đỉnh của hypebol.

• Đoạn thẳng A1A2 = 2a gọi là trục thực, đoạn thẳng B1B2 = 2b gọi là trục ảo của hypebol.

• Giao điểm O của hai trục là tâm đối xứng của hypebol.

• Nếu M(x; y) ∈ (H) thì x ≤ –a hoặc x ≥ a.

Ví dụ: Cho hypebol (H) có một tiêu điểm F2(8; 0) và (H) đi qua điểm A(5; 0). Viết phương trình chính tắc của hypebol (H).

Hướng dẫn giải

Phương trình chính tắc của (H) có dạng x2a2−y2b2=1, trong đó a, b > 0.

Vì A(5; 0) ∈ (H) nên ta có 52a2−02b2=1. Suy ra a = 5.

Do (H) có một tiêu điểm F2(8; 0) nên ta có c = 8.

Suy ra b=c2−a2=64−25=39.

Vậy phương trình chính tắc của (H) là x225−y239=1.

3. Parabol

3.1. Nhận biết parabol

Cho một điểm F và một đường thẳng ∆ cố định không đi qua F. Parabol (P) là tập hợp các điểm M cách đều F và ∆.

F gọi là tiêu điểm và ∆ gọi là đường chuẩn của parabol (P).

3.2. Phương trình chính tắc của parabol

Cho parabol (P) có tiêu điểm F và đường chuẩn ∆. Gọi khoảng cách từ tiêu điểm đến đường chuẩn là p, hiển nhiên p > 0.

Chọn hệ trục tọa độ Oxy sao cho Fp2;0 và ∆: x+p2=0.

Người ta chứng minh được:

M(x; y) ∈ (P) ⇔ y2 = 2px    (3).

Phương trình (3) gọi là phương trình chính tắc của parabol.

Chú ý:

• O gọi là đỉnh của parabol (P).

• Ox gọi là trục đối xứng của parabol (P).

• p gọi là tham số tiêu của parabol (P).

• Nếu M(x; y) ∈ (P) thì x ≥ 0 và M’(x; –y) ∈ (P).

Ví dụ: Viết phương trình chính tắc của parabol (P), biết (P) có đường chuẩn ∆: x + 4 = 0.

Hướng dẫn giải

(P) có đường chuẩn ∆: x + 4 = 0.

Ta suy ra p2=4.

Khi đó p = 2.4 = 8.

Vậy phương trình chính tắc của parabol (P) là: y2 = 16x.

B. Bài tập tự luyện

Bài 1. Tìm tiêu điểm của các đường conic sau:

a) Elip (E): x2100+y264=1.

b) Hypebol (H): x24−y29=1.

c) Parabol (P): y2 = 2x.

Hướng dẫn giải

a) Phương trình (E) có dạng: x2a2+y2b2=1, với a = 10, b = 8.

Suy ra c=a2−b2=100−64=6.

Vậy elip (E) có các tiêu điểm F1(–6; 0) và F2(6; 0).

b) Phương trình (H) có dạng: x2a2−y2b2=1, với a = 2, b = 3.

Suy ra c=a2+b2=4+9=13.

Vậy hypebol (H) có các tiêu điểm F1−13;0 và F213;0.

c) Phương trình parabol (P) có dạng: y2 = 2px, với p = 1.

Ta suy ra p2=12.

Vậy parabol (P) có tiêu điểm F12;0.

Bài 2. Viết phương trình chính tắc của các đường conic trong các trường hợp sau:

a) Elip (E) đi qua điểm B(0; 3) và có tiêu cự bằng 6.

b) Hypebol (H) đi qua điểm M(2; 4) và có độ dài trục ảo bằng 8.

c) Parabol (P) có tiêu điểm F(10; 0).

Hướng dẫn giải

a) Phương trình elip (E) có dạng: x2a2+y2b2=1, với a, b > 0.

Vì B(0; 3) ∈ (E) nên ta có 02a2+32b2=1.

Suy ra b = 3.

Theo đề, ta có tiêu cự bằng 6. Suy ra 2c = 6. Nghĩa là c = 3.

Ta có a=b2+c2=9+9=32.

Vậy phương trình elip (E) là: x218+y29=1.

b) Phương trình hypebol (H) có dạng: x2a2−y2b2=1, với a, b > 0.

Vì (H) có độ dài trục ảo bằng 8 nên ta có 2b = 8. Suy ra b = 4.

Khi đó b2 = 16.

Vì M(2; 4) ∈ (H) nên ta có 4a2−16b2=1.

⇔4a2−1616=1.

⇔4a2=2

⇔a2=42=2.

Vậy phương trình chính tắc của (H) là: x22−y216=1.

c) Parabol (P) có tiêu điểm F(10; 0) nên ta có p2=10.

Suy ra p = 2.10 = 20.

Vậy phương trình chính tắc của (P) là: y2 = 40x.

Bài 3. Cho elip (E): x24+y21=1 và C(2; 0). Tìm A, B thuộc (E), biết A có tung độ dương, A và B đối xứng nhau qua trục hoành và ∆ABC cân tại A.

Hướng dẫn giải

Gọi A(x0; y0) với y0 > 0.

Vì A, B đối xứng nhau qua trục hoành nên ta có tọa độ B(x0; –y0).

Vì A ∈ (E) nên ta có x024+y021=1.

⇔y02=1−x024    (1).

Với A(x0; y0), B(x0; –y0) và C(2; 0) ta có:

AB→=0;−2y0 và AC→=2−x0;−y0

Vì ∆ABC cân tại A nên ta có AB2 = AC2.

⇔ (–2y0)2 = (2 – x0)2 + (–y0)2

⇔4y02=4−4x0+x02+y02

⇔3y02=4−4x0+x02    (2).

Thế (1) vào (2), ta được: 31−x024=4−4x0+x02.

⇔3−3.x024=4−4x0+x02

⇔74x02−4x0+1=0.

⇔ x0 = 2 hoặc x0=27.

• Với x0 = 2, ta có y02=1−x024=1−44=0. Suy ra y0 = 0.

Khi A(2; 0).

Lúc này A ≡ C (mâu thuẫn vì ba điểm A, B, C tạo thành một tam giác).

Vậy ta loại trường hợp x0 = 2.

• Với x0=27, ta có y02=1−x024=1−149=4849. Suy ra y0=±437.

Vì y0 > 0 nên ta nhận y0=437.

Vậy A27;437, B27;−437 thỏa mãn yêu cầu bài toán.

Bài 4. Một tháp triển lãm có mặt cắt là một hypebol có phương trình \x2252−y2402=1. Biết chiều cao của tháp là 120 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol bằng 23 khoảng cách từ tâm đối xứng đến đáy. Chọn hệ trục toạ độ như hình vẽ dưới đây, tính bán kính nóc và bán kính đáy của tháp. (Làm tròn kết quả đến hàng phần mười).

Hướng dẫn giải

Theo bài ra, khoảng cách từ nóc tháp đến tâm O bằng 23 khoảng cách từ tâm O đến đáy nên ta có: OA = 23OB và OA + OB = 120 m.

Suy ra: OA = 48 m, OB = 72 m.

Þ A (0; 48), B(0 ; –72).

Thay y = 48 vào phương trình x2252−y2402=1, ta được:  x2252−482402=1 

Þ x2 = 1 525 ⇒ x ≈ 39,1 hoặc x ≈ –39,1.

Suy ra bán kính nóc khoảng  39,1 (m).

Thay y = –72 vào phương trình x2252−y2402=1 ta được:

x2252−(−72)2402=1 

Þ x2 = 2 650 ⇒ x ≈ 51,5 hoặc x ≈ –51,5.

Suy ra bán kính đáy khoảng 51,5 (m).

Vậy bán kính nóc và bán kính đáy của tháp triển lãm lần lượt là 39,1 (m) và  51,5 (m).

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho mặt cầu có tâm, bán kính. Mặt phẳng cắt mặt cầu theo giao tuyến là đường tròn có bán kính. Kết luận nào sau đây sai?

Next post

Trong các mệnh đề sau, mệnh đề nào sai?

Bài liên quan:

Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

Lý thuyết Toán lớp 10 Bài 2: Tập hợp

Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp

Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 1: Mệnh đề
  2. Lý thuyết Toán lớp 10 Bài 2: Tập hợp
  3. Lý thuyết Toán lớp 10 Bài 3: Các phép toán trên tập hợp
  4. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề và tập hợp
  5. Lý thuyết Toán lớp 10 Bài 1: Bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  8. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  9. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai
  10. Lý thuyết Toán lớp 10 Chương 3: Hàm số bậc hai và đồ thị
  11. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°
  12. Lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin
  13. Lý thuyết Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế
  14. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác
  15. Lý thuyết Toán lớp 10 Bài 1: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 3: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 4: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 5: Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Số gần đúng và sai số
  21. Lý thuyết Toán lớp 10 Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  22. Lý thuyết Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  23. Lý thuyết Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
  24. Lý thuyết Toán lớp 10 Chương 6: Thống kê
  25. Lý thuyết Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
  26. Lý thuyết Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn
  27. Lý thuyết Toán lớp 10 Bài 3: Phương trình quy về phương trình bậc hai
  28. Lý thuyết Toán lớp 10 Chương 4: Bất phương tình bậc hai một ẩn
  29. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng và quy tắc nhân
  30. Lý thuyết Toán lớp 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp
  31. Lý thuyết Toán lớp 10 Bài 3: Nhị thức Newton
  32. Lý thuyết Toán lớp 10 Chương 8: Đại số tổ hợp
  33. Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
  34. Lý thuyết Toán lớp 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ
  35. Lý thuyết Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ
  36. Lý thuyết Toán lớp 10 Chương 9: Tọa độ của vectơ
  37. Lý thuyết Toán lớp 10 Bài 1: Không gian mẫu và biến cố
  38. Lý thuyết Toán lớp 10 Bài 2: Xác suất của biến cố
  39. Lý thuyết Toán lớp 10 Chương 10: Xác suất

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán