Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 10 – Chân trời

Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 2

By admin 11/04/2023 0

Giải bài tập Toán lớp 10 Bài tập cuối chương 2

Video bài giảng Bài tập cuối chương 2 – Chân trời sáng tạo

Giải toán lớp 10 trang 39 Tập 1 Chân trời sáng tạo

Bài 1 trang 39 Toán lớp 10: Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ Oxy

a) −2x+y−1≤0

b) −x+2y>0

c) x−5y<2

d) −3x+y+2≤0

e) 3(x−1)+4(y−2)<5x−3

Phương pháp giải:

Bước 1: Vẽ đường thẳng Δ:ax+by+c=0 đi qua hai điểm A và B.

Bước 2: Xét điểm C∉Δ, kiểm tra C có thuộc miền nghiệm hay không.

Bước 3: Vẽ hình và kết luận.

Lời giải:

a) Vẽ đường thẳng Δ:−2x+y−1=0 đi qua hai điểm A(0;1) và B(−1;−1)

Xét gốc tọa độ O(0;0). Ta thấy O∉Δ và −2.0+0−1=−1<0

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ Δ, chứa gốc tọa độ O

(miền không gạch chéo trên hình)

b) Vẽ đường thẳng Δ:−x+2y=0 đi qua hai điểm O(0;0) và B(2;1)

Xét điểm A(1;0). Ta thấy A∉Δ và −1+2.0=−1>0

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ Δ, không chứa điểm A (1;0)

(miền không gạch chéo trên hình)

c) Vẽ đường thẳng  đi qua hai điểm  và 

Xét gốc tọa độ  Ta thấy  và 

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ , chứa gốc tọa độ O

(miền không gạch chéo trên hình)

d) Vẽ đường thẳng  đi qua hai điểm  và 

Xét điểm  Ta thấy  và 

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ , không chứa điểm O (0;0)

(miền không gạch chéo trên hình)

e) Ta có:  

Vẽ đường thẳng  đi qua hai điểm  và 

Xét điểm  Ta thấy  và 

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ , chứa điểm O (0;0)

(miền không gạch chéo trên hình)

Bài 2 trang 39 Toán lớp 10: Biểu diễn miền nghiệm của hệ bất phương trình sau trên mặt phẳng tọa độ Oxy:

{x−2y>0x+3y<3

Phương pháp giải:

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên cùng một mặt phẳng Oxy
Lời giải:

Vẽ đường thẳng d:x−2y=0 đi qua hai điểm O(0;0) và B(2;1)

Xét gốc tọa độ A(0;1). Ta thấy A∉Δ và 0−2.1=−2<0

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ d, không chứa điểm A

(miền không gạch chéo trên hình)

Vẽ đường thẳng d′:x+3y=3 đi qua hai điểm A′(0;1) và B′(3;0)

Xét gốc tọa độ O(0;0). Ta thấy O∉Δ và 0+3.0=0<3

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ d′, chứa gốc tọa độ O

(miền không gạch chéo trên hình)

Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.

Bài 3 trang 39 Toán lớp 10: Một công ty dự định sản xuất hai loại sản phẩm A và B. Các sản phẩm này được chế tạo từ ba loại nguyên liệu I, II và III. Số kilôgam dự trữ từng loại nguyên liệu và số kilôgam từng loại nguyên liệu cần dùng để sản xuất ra 1 kg sản phẩm được cho trong bảng sau:




Loại nguyên liệu



Số kilogam nguyên liệu dự trữ



Số kilogam nguyên liệu cần dùng sản xuất 1 kg sản phẩm





A



B





I



8



2



1





II



24



4



4





III



8



1



2




Công ty đó nên sản xuất bao nhiêu sản phẩm mỗi loại để tiền lãi thu về lớn nhất? Biết rằng, mỗi kilôgam sản phẩm loại A lãi 30 triệu đồng, mỗi kilôgam sản phẩm loại B lãi 50 triệu đồng.

Phương pháp giải:

Gọi x, y lần lượt là số kilogam sản phẩm loại A, loại B mà công ty đó sản xuất.

Lập các điều kiện ràng buộc đối với x, y thành hệ bất phương trình

Biểu diễn miền nghiệm của mỗi bất phương trình trên cùng một hệ trục tọa độ Oxy

Lời giải:

Gọi x, y lần lượt là số kilogam sản phẩm loại A, loại B mà công ty đó sản xuất.

Ta có các điều kiện ràng buộc đối với x, y như sau:

– Hiển nhiên x ≥ 0 , y ≥ 0

–          Nguyên liệu loại I có số kilogam dự trữ là 8 kg nên 2x+y≤8

–          Nguyên liệu loại II có số kilogam dự trữ là 24 kg nên 4x+4y≤24

–          Nguyên liệu loại III có số kilogam dự trữ là 8 kg nên x+2y≤8

Từ đó ta có hệ bất phương trình:

{2x+y≤84x+4y≤24x+2y≤8x≥0y≥0

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh  O(0;0),A(0;4),B(83;83),C(4;0).

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: F=30x+50y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),F=30.0+50.0=0

Tại A(0;4),F=30.0+50.4=200

Tại B(83;83),F=30.83+50.83=6403

Tại C(4;0):F=30.4+50.0=120

F đạt giá trị lớn nhất bằng 6403 tại B(83;83).

Vậy công ty đó nên sản xuất 83kgsản phẩm mỗi loại để tiền lãi thu về lớn nhất.

Bài 4 trang 39 Toán lớp 10: Một công ty cần mua các tủ đựng hồ sơ. Có hai loại tủ: Tủ loại A chiếm 3 m2 sàn, loại này có sức chứa 12 m3 và có giá 7,5 triệu đồng; tủ loại B chiếm 6 m2 sàn, loại này có sức chứa 18 m3 và có giá 5 triệu. Cho biết công ty chỉ thu xếp được nhiều nhất là 60 m2 mặt bằng cho chỗ đựng hồ sơ và ngân sách mua tủ không quá 60 triệu đồng. Hãy lập kế hoạch mua sắm để công ty có được thể tích đựng hồ sơ lớn nhất.

Lời giải:

Gọi x, y lần lượt là số tủ loại A, loại B mà công ty cần mua.

Ta có các điều kiện ràng buộc đối với x, y như sau:

– Hiển nhiên x ≥ 0 , y ≥ 0

–  Mặt bằng nhiều nhất là 60 m2 nên 3x+6y≤60

–  Ngân sách mua tủ không quá 60 triệu đồng nên 7,5x+5y≤60

Từ đó ta có hệ bất phương trình:

{3x+6y≤607,5x+5y≤60x≥0y≥0

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

 

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh O(0;0),A(0;10),B(2;9),C(8;0).

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: F=12x+18y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),F=12.0+18.0=0

Tại A(0;10):F=12.0+18.10=180

Tại B(2;9),F=12.2+18.9=186

Tại C(8;0).F=12.8+18.0=96

F đạt giá trị lớn nhất bằng 186 tại B(2;9),

Vậy công ty đó nên mua 2 tủ loại A và 9 tủ loại B để thể tích đựng hồ sơ là lớn nhất.

Bài 5 trang 39 Toán lớp 10: Một nông trại thu hoạch được 180 kg cà chua và 15 kg hành tây. Chủ nông trại muốn làm các hũ tương cà để bán. Biết rằng, để làm ra một hũ tương cà loại A cần 10 kg cà chua cùng với l kg hành tây và khi bán lãi được 200 nghìn đồng, còn để làm được một hũ tương cà loại B cần 5 kg cà chua cùng với 0,25 kg hành tây và khi bán lãi được 150 nghìn đồng. Thǎm dò thị hiếu của khách hàng cho thấy cần phải làm số hũ tương loại A ít nhất gấp 3,5 lần số hũ tương loại B. Hãy giúp chủ nông trại lập kế hoạch làm tương cà để có được nhiều tiền lãi nhất.

Lời giải:

Gọi x, y lần lượt là số hũ tương cà loại A, loại B mà chủ nông trại cần làm.

Ta có các điều kiện ràng buộc đối với x, y như sau:

– Hiển nhiên x ≥ 0, y ≥ 0

–  Có 180 kg cà chua nên 10x+5y≤180

–  Có 15 kg hành tây nên x+0,25y≤15

–  Số hũ tương loại A ít nhất gấp 3,5 lần số hũ tương loại B nên x≥3,5y

Từ đó ta có hệ bất phương trình:

{10x+5y≤180x+0,25y≤15x≥3,5yx≥0y≥0

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tam giác OAB, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh O(0;0),A(14;4),B(15;0).

Gọi F là số tiền lãi (đơn vị: nghìn đồng) thu được, ta có: F=200x+150y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),F=200.0+150.0=0

Tại A(14;4),F=200.14+150.4=3400

Tại B(15;0),F=200.15+150.0=3000

F đạt giá trị lớn nhất bằng 3400 nghìn đồng tại A(14;4).

Vậy chủ nông trại đó nên làm 14 hũ loại A và 4 hũ loại B để tiền lãi thu được là lớn nhất.

Bài 6 trang 39 Toán lớp 10: Một xưởng sản xuất có hai máy đặc chủng A, B sản xuất hai loại sản phẩm X, Y. Để sản xuất một tấn sản phẩm X cần dùng máy A trong 6 giờ và dùng máy B trong 2 giờ. Để sản xuất một tấn sản phẩm Y cần dùng máy A trong 2 giờ và dùng máy B trong 2 giờ. Cho biết mỗi máy không thể sản xuất đồng thời hai loại sản phẩm. Máy A làm việc không quá 12 giờ một ngày, máy B làm việc không quá 8 giờ một ngày. Một tấn sản phẩm X lãi 10 triệu đồng và một tấn sản phẩm Y lãi 8 triệu đồng. Hãy lập kế hoạch sản xuất mỗi ngày sao cho tổng số tiền lãi cao nhất.

Lời giải:

Gọi x, y lần lượt là số tấn sản phẩm X, Y mà xưởng cần sản xuất mỗi ngày.

Ta có các điều kiện ràng buộc đối với x, y như sau:

– Hiển nhiên x ≥ 0, y ≥ 0

– Máy A làm việc không quá 12 giờ một ngày nên 6x+2y≤12

– Máy B làm việc không quá 8 giờ một ngày nên 2x+2y≤8

Từ đó ta có hệ bất phương trình:

{6x+2y≤122x+2y≤8x≥0y≥0

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh O(0;0),A(0;4),B(1;3),C(2;0).

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: F=10x+8y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),F=10.0+8.0=0

Tại A(0;4):F=10.0+8.4=32

Tại B(1;3),F=10.1+8.3=34

Tại C(2;0).F=10.2+8.0=20

F đạt giá trị lớn nhất bằng 34 tại B(1;3).

Vậy xưởng đó nên sản xuất 1 tấn sản phầm loại X và 3 tấn sản phầm loại Y để tổng số tiền lãi là lớn nhất.

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài 1: Hàm số và đồ thị

Bài 2: Hàm số bậc hai

Bài tập cuối chương 3

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=x−1+−x+9  lần lượt là

Next post

Giá trị lớn nhất của hàm số y=4xx2+13+6xx2+1−1  bằng

Bài liên quan:

Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Mệnh đề

Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Tập hợp

Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Các phép toán trên tập hợp

Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 1

Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Bất phương trình bậc nhất hai ẩn

Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Hệ bất phương trình bậc nhất hai ẩn

Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Hàm số và đồ thị

Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Hàm số bậc hai

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Mệnh đề
  2. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Tập hợp
  3. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Các phép toán trên tập hợp
  4. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 1
  5. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Bất phương trình bậc nhất hai ẩn
  6. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Hệ bất phương trình bậc nhất hai ẩn
  7. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Hàm số và đồ thị
  8. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Hàm số bậc hai
  9. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 3
  10. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Giá trị lượng giác của một góc từ 0 đến 180
  11. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Định lí cosin và định lí sin
  12. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Giải tam giác và ứng dụng thực tế
  13. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 4
  14. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Khái niệm vecto
  15. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Tổng và hiệu của hai vecto
  16. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Tích của một số với một vecto
  17. Giải SGK Toán 10 Bài 4 (Chân trời sáng tạo): Tích vô hướng của hai vecto
  18. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 5
  19. Giải SGK Toán 10 Bài 1: Số gần đúng và sai số | Chân trời sáng tạo
  20. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
  21. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
  22. Giải SGK Toán 10 Bài 4 (Chân trời sáng tạo): Các số đặc trưng mức độ phân tán của mẫu số liệu
  23. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 6
  24. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê
  25. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê
  26. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Dấu của tam thức bậc hai
  27. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Giải bất phương trình bậc hai một ẩn
  28. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Phương trình quy về phương trình bậc hai
  29. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 7
  30. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Quy tắc cộng và quy tắc nhân
  31. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Hoán vị, chỉnh hợp và tổ hợp
  32. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Nhị thức Newton
  33. Giải SGK Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 8
  34. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Toạ độ của vecto
  35. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Đường thẳng trong mặt phẳng tọa độ
  36. Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ
  37. Giải SGK Toán 10 Bài 4 (Chân trời sáng tạo): Ba đường conic trong mặt phẳng tọa độ
  38. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Không gian mẫu và biến cố
  39. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Xác suất của biến cố
  40. Giải SGK Toán 10 (Chân trời sáng tạo): Bài tập cuối chương 10 trang 86
  41. Giải SGK Toán 10 Bài 1 (Chân trời sáng tạo): Vẽ đồ thị hàm số bậc hai bằng phần mềm Geogebra
  42. Giải SGK Toán 10 Bài 2 (Chân trời sáng tạo): Vẽ ba đường conic bằng phần mềm Geogebra

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán