Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Kết nối

Giải SGK Toán 7 Bài 25 (Kết nối tri thức): Đa thức một biến

By admin 18/04/2023 0

Phương pháp giải:

+ Muốn cộng (hay trừ) hai đơn thức cùng bậc, ta cộng (hay trừ) các hệ số với nhau, giữ nguyên lũy thừa của biến.

+ Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

Lời giải:

a)5x3+x3=(5+1)x3=6x3b)74x5−34x5=(74−34)x5=44x5=x5c)(−0,25x2).(8x3)=(−0,25.8).(x2.x3)=−2.x5

2. Khái niệm đa thức một biến

Câu hỏi trang 26 Toán lớp 7: Mỗi số thực có phải một đa thức không? Tại sao?

Phương pháp giải:

Một đơn thức cũng là một đa thức

Lời giải:

Vì một số thực là một đơn thức. Mà 1 đơn thức cũng là một đa thức nên mỗi số thực cũng là một đa thức

Luyện tập 2 trang 26 Toán lớp 7: Hãy liệt kê các hạng tử của đa thức B=2x4−3x2+x+1

Phương pháp giải:

Đa thức là tổng của các đơn thức.

Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức

Lời giải:

Các hạng tử của B là: 2x4; -3x2; x ; 1

Giải Toán 7 trang 27 Tập 2

3. Đa thức một biến thu gọn

Luyện tập 3 trang 27 Toán lớp 7: Thu gọn đa thức: P=2x3−5x2+4x3+4x+9+x

Phương pháp giải:

Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc

Lời giải:

P=2x3−5x2+4x3+4x+9+x=(2x3+4x3)−5x2+(4x+x)+9=6x3−5x2+5x+9

4. Sắp xếp đa thức một biến

Luyện tập 4 trang 27 Toán lớp 7: Thu gọn (nếu cần) và sắp xếp mỗi đa thức sau theo lũy thừa giảm dần của biến

a)A=3x−4x4+x3;b)B=−2x3−5x2+2x3+4x+x2−5c)C=x5−12x3+34x−x5+6x2−2

Phương pháp giải:

Bước 1:  Đưa đa thức về dạng thu gọn

Bước 2: Sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến

Lời giải:

a)A=3x−4x4+x3=−4x4+x3+3xb)B=−2x3−5x2+2x3+4x+x2−5=(−2x3+2x3)+(−5x2+x2)+4x−5=0+(−4x2)+4x−5=−4x2+4x−5c)C=x5−12x3+34x−x5+6x2−2=(x5−x5)−12x3+6x2+34x−2=−12x3+6x2+34x−2

Giải Toán 7 trang 28 Tập 2

5. Bậc và các hệ số của một đa thức

HĐ 1 trang 28 Toán lớp 7: Xét đa thức P=−3x4+5x2−2x+1. Đó là một đa thức thu gọn. Hãy quan sát các hạng tử (các đơn thức)  của đa thức P và trả lời câu hỏi sau: Trong P, bậc của hạng tử 5×2 là 2 (số mũ của x2). Hãy xác định bậc của các hạng tử trong P.

Phương pháp giải:

Bậc của hạng tử là số mũ của lũy thừa của biến

Lời giải:

Bậc của hạng tử -3x4 là 4 ( số mũ của x4)

Bậc của hạng tử -2x là 1 ( số mũ của x)

Bậc của 1 là 0

HĐ 2 trang 28 Toán lớp 7: Xét đa thức P=−3x4+5x2−2x+1. Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức)  của đa thức P và trả lời câu hỏi sau: Trong P, hạng tử nào có bậc cao nhất? Tìm hệ số và bậc của hạng tử đó.

Phương pháp giải:

Tìm hạng tử có lũy thừa của biến có bậc cao nhất

+ Hệ số của hạng tử là số thực trong đơn thức đó

+ Bậc của hạng tử là số mũ của lũy thừa của biến

Lời giải:

Trong P, hạng tử -3x4 có bậc cao nhất. Hạng tử này có:

+ Hệ số: -3

+ Bậc: 4

HĐ 3 trang 28 Toán lớp 7: Xét đa thức P=−3x4+5x2−2x+1. Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức)  của đa thức P và trả lời câu hỏi sau: Trong P, hạng tử nào có bậc bằng 0?

Phương pháp giải:

+ Bậc của hạng tử là số mũ của lũy thừa của biến.

Hạng tử chỉ gồm số thực khác 0 có bậc là 0

Lời giải:

Trong P, hạng tử 1 có bậc bằng 0.

Câu hỏi trang 28 Toán lớp 7: Một số khác 0 cũng là một đa thức. Vậy bậc của nó bằng bao nhiêu?

Phương pháp giải:

Một số thực được xem là một đơn thức có bậc là 0

Mỗi đơn thức cũng là 1 đa thức

Trả lời:

Bậc của một số khác 0 là 0.

Luyện tập 5 trang 28 Toán lớp 7: Xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau

a) 5x2-2x+1-3x4;

b) 1,5x2-3,4x4+0,5x2-1.

Phương pháp giải:

Bước 1: Thu gọn đa thức

Bước 2: Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức

+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất

+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất

+ Hệ số tự do là hệ số của hạng tử bậc 0.

Lời giải:

a) 5x2-2x+1-3x4 = -3x4 + 5x2 – 2x + 1

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -3

+ Hệ số tự do là: 1

b) 1,5x2-3,4x4+0,5x2-1 = -3,4x4 + (1,5x2 + 0,5x2) -1 = -3,4x4 + 2x2 -1

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -3,4

+ Hệ số tự do là: -1

Giải Toán 7 trang 29 Tập 2

6. Nghiệm của đa thức một biến

HĐ 4 trang 29 Toán lớp 7: Xét đa thức G(x) = x2 – 4. Giá trị của biểu thức G(x) tại x =3 còn gọi là giá trị của đa thức G(x) tại x =3 và được kí hiệu là G(3). Như vậy, ta có: G(3) = 32 – 4 = 5. Tính các giá trị G(-2); G(1); G(0); G(1); G(2).

Phương pháp giải:

Thay từng giá trị của x vào đa thức x2 – 4

Lời giải:

G(-2) = (-2)2 – 4 = 4 – 4 = 0;

G(1) = 12 – 4 = 1 – 4 = -3;

G(0) = 02 – 4 = 0 – 4 = -4;

G(1) = 12 – 4 = 1- 4 = -3;

G(2) = 22 – 4 = 4 – 4 = 0

HĐ 5 trang 29 Toán lớp 7: Với giá trị nào của c thì G(x) có giá trị bằng 0?

Phương pháp giải:

Xét các giá trị x xem tại x = ? thì G(x) = 0

Lời giải:

Tại x = – 2 và x = 2 thì G(x) có giá trị bằng 0.

Luyện tập 6 trang 29 Toán lớp 7: 1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x =2. Từ đó hãy tìm một nghiệm của đa thức F(x)

2. Tìm nghiệm của đa thức E(x) = x2 + x.

Phương pháp giải:

+ Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0

Chú ý: Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0

Lời giải:

1. G(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 +3 – 2

G(0) = 2. 02 – 3 . 0 – 2 = -2

G(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3

G(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0

Vì G(2) = 0  nên 0 là 1 nghiệm của đa thức G(x)

2. Vì đa thức E(x)  có hệ số tự do bằng 0 nên có một nghiệm là x = 0

Vận dụng trang 29 Toán lớp 7: Trở lại bài toán mở đầu, hãy thực hiện các yêu cầu sau

a) Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức H(x) = -5x2 + 15x

b) Tại sao x = 0 là một nghiệm của đa thức H(x)? Kết quả đó nói lên điều gì?

c) Tính giá trị của H(x) khi x =1; x = 2 và x = 3 để tìm nghiệm khác 0 của H(x). Nghiệm ấy có ý nghĩa gì? Từ đó hãy trả lời câu hỏi của bài toán.

Phương pháp giải:

a) + Bậc của đa thức là bậc của hạng tử có bậc cao nhất

+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất

+ Hệ số tự do là hệ số của hạng tử bậc 0.

b) Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0

c) Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0

Trả lời:

a) + Bậc của đa thức là: 2

+ Hệ số cao nhất là: -5

+ Hệ số tự do là: 0

b) Vì đa thức có hệ số tự do bằng 0 nên có nghiệm x = 0

Điều này nói lên: Tại thời điểm bắt đầu ném thì vật ở mặt đất.

c) H(1) = -5.12 + 15.1 = -5 + 15 = 10

H(2) = -5.22 + 15.2 = -20 + 30 = 10

H(3) = -5.32 + 15.3 = -45 + 45 = 0

Vì H(3) = 0 nên x = 3 là nghiệm của H(x)

Nghiệm này có ý nghĩa: Tại thời điểm sau khi ném vật 3 giây thì vật trở lại mặt đất.

Vậy sau 3 giây kể từ khi được ném lên, vật sẽ rơi trở lại mặt đất.

Giải Toán 7 trang 30 Tập 2

Bài tập

Bài 7.5 trang 30 Toán lớp 7: a) Tính (12x3).(4x2). Tìm hệ số và bậc của đơn thức nhận được.

b) Tính 12x3−52x3. Tìm hệ số và bậc của đơn thức nhận được.

Phương pháp giải:

Bước 1: Thu gọn

a) Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

b) Muốn trừ hai đơn thức cùng bậc, ta trừ các hệ số với nhau, giữ nguyên lũy thừa của biến.

Bước 2:

Đơn thức có dạng tích của một số thực với một lũy thừa của biến thì:

Số thực gọi là hệ số

Số mũ của lũy thừa của biến gọi là bậc của đơn thức

Lời giải:

a) (12x3).(4x2)=(12.4).(x3.x2)=2.x5.

Hệ số: 2

Bậc: 5

b) 12x3−52x3=(12−52)x3=−42.x3=−2x3

Hệ số: -2

Bậc: 3

Bài 7.6 trang 30 Toán lớp 7: Cho hai đa thức A=x3+32x−7x4+12x−4x2+9B=x5−3x2+8x4−5x2−x5+x−7

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.

b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.

Phương pháp giải:

a) Bước 1: Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc

Bước 2: Sắp xếp đa thức trên theo lũy thừa giảm của biến.

b) + Bậc của đa thức là bậc của hạng tử có bậc cao nhất

+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất

+ Hệ số tự do là hệ số của hạng tử bậc 0.

Lời giải: 

a)

A(x)=x3+32x−7x4+12x−4x2+9=−7x4+x3−4x2+(32x+12x)+9=−7x4+x3−4x2+2x+9B(x)=x5−3x2+8x4−5x2−x5+x−7=(x5−x5)+8x4+(−3x2−5x2)+x−7=0+8x4+(−8x2)+x−7=8x4−8x2+x−7

b) * Đa thức A(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -7

+ Hệ số tự do là: 9

* Đa thức B(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: 8

+ Hệ số tự do là: -7

Bài 7.7 trang 30 Toán lớp 7: Cho hai đa thức  P(x)=5x3+2x4−x2+3x2−x3−2x4−4x3Q(x)=3x−4x3+8x2−5x+4x3+5

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.

b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.

Phương pháp giải:

a) Bước 1: Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc

Bước 2: Sắp xếp đa thức trên theo lũy thừa giảm của biến.

b) Thay từng giá trị x vào P(x), Q(x) đã thu gọn và tính.

Lời giải:

a)

P(x)=5x3+2x4−x2+3x2−x3−2x4−4x3=(2x4−2x4)+(5x3−x3−4x3)+(−x2+3x2)=0+0+2x2=2x2Q(x)=3x−4x3+8x2−5x+4x3+5=(−4x3+4x3)+8x2+(3x−5x)+5=0+8x2+(−2x)+5=8x2−2x+5

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

Bài 7.8 trang 30 Toán lớp 7: Người ta dùng hai máy bơm để bơm nước vào một bể chứa nước. Máy thứ nhất bơm mỗi giờ được 22 m3 nước. Máy thứ hai bơm mỗi giờ được 16 m3 nước. Sau khi cả hai máy chạy trong x giờ, người ta tắt máy thứ nhất và để máy thứ hai chạy thêm 0,5 giờ nữa thì bể nước đầy. Hãy viết đa thức ( biến x) biểu thị dung tích bể (m3). Biết rằng trước khi bơm, trong bể có 1,5 m3 nước. Tìm hệ số cao nhất và hệ số tự do của đa thức đó.

Phương pháp giải:

Bước 1: Viết đa thức biểu thị dung tích bể =  Lượng nước 2 máy bơm trong x giờ + lượng nước máy 2 bơm trong 0,5 giờ + Lượng nước trong bể có sẵn

Bước 2: Thu gọn đa thức

+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất

+ Hệ số tự do là hệ số của hạng tử bậc 0.

Lời giải:

Đa thức V(x) = 22.x + 16.x + 0,5.16 + 1,5 = (22+16).x + 8 + 1,5 = 38.x + 9,5

Hệ số cao nhất: 38

Hệ số tự do: 9,5

Bài 7.9 trang 30 Toán lớp 7: Viết đa thức F(x) thỏa mãn đồng thời các điều kiện sau


Bậc của F(x) bằng 3
Hệ số của x2 bằng hệ số của x và bằng 2
Hệ số cao nhất của F(x) bằng -6 và hệ số tự do bằng 3.

Phương pháp giải:

Viết đa thức thỏa mãn yêu cầu:

+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất

+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất

+ Hệ số tự do là hệ số của hạng tử bậc 0.

Lời giải:

F(x) = -6x3 + 2x2 + 2x + 3

Bài 7.10 trang 30 Toán lớp 7: Kiểm tra xem

a) x=−18 có phải là nghiệm của đa thức P(x) = 4x + 12 không?

b) Trong ba số 1; -1 và 2, số nào là nghiệm của đa thức Q(x) = x2 + x – 2 ?

Phương pháp giải:

a) Thay giá trị x=−18 vào đa thức P(x) = 4x + 12 để tính giá trị P(−18). Nếu P(−18) = 0 thì x=−18 là nghiệm của P(x)

b) Tìm Q(1); Q(-1); Q(2). Tại giá trị x nào mà Q(x) = 0 thì số đó là nghiệm của Q(x)

Lời giải:

a) Ta có: P(−18) = 4.(−18)+ 12= (-12) + 12 = 0

Vậy x=−18 là nghiệm của đa thức P(x) = 4x + 12

b) Q(1) = 12 +1 – 2 = 0

Q(-1) = (-1)2 + (-1) – 2 = -2

Q(2) = 22 + 2 – 2 = 4

Vì Q(1) = 0 nên x = 1 là nghiệm của Q(x)

Bài 7.11 trang 30 Toán lớp 7: Mẹ cho Quỳnh 100 nghìn đồng. Quỳnh mua một bộ dụng cụ học tập có giá 37 nghìn đồng và một cuốn sách tham khảo môn Toán với giá x ( nghìn đồng).

a) Hãy tìm đa thức ( biến x) biểu thị số tiền Quỳnh còn lại ( đơn vị: nghìn đồng). Tìm bậc của đa thức đó.

b) Sau khi mua sách thì Quỳnh tiêu vừa hết số tiền mẹ cho. Hỏi giá tiền của cuốn sách là bao nhiêu?

Phương pháp giải:

Viết đa thức biểu thị số tiền còn lại = số tiền mẹ cho – số tiền đã mua

Bậc của đa thức là bậc của hạng tử có bậc cao nhất

Khi tiêu hết tiền, tức là số tiền còn lại bằng 0

Lời giải:

a) Đa thức C(x) = 100 – 37 – x = – x + 63

Bậc của đa thức là 1

b) Sau khi mua sách, ta có số tiền còn lại là 0 hay – x + 63 = 0

⇒63=x hay x = 63

Vậy giá tiền cuốn sách là 63 nghìn đồng

Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 24: Biểu thức đại số

Bài 26: Phép cộng và phép trừ đa thức một biến

Luyện tập chung trang 34

Bài 27: Phép nhân đa thức một biến

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Chứng minh đẳng thức sau (với n ∈ N∗) 2 +5 + 8 + … + (3n – 1) = 33n+12

Next post

Cho hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi S là diện tích phần gạch chéo trong hình vẽ. Mệnh đề nào dưới đây đúng?

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14

Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế

Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23

Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Giải SGK Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  4. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  5. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  6. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  7. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1
  8. Giải SGK Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn
  9. Giải SGK Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học
  10. Giải SGK Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực
  11. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 37
  12. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 2
  13. Giải SGK Toán 7 Bài 8 (Kết nối tri thức): Góc ở vị trí đặc biệt. Tia phân giác của một góc
  14. Giải SGK Toán 7 Bài 9 (Kết nối tri thức): Hai đường thẳng song song và dấu hiệu nhận biết
  15. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 50
  16. Giải SGK Toán 7 Bài 10 (Kết nối tri thức): Tiên đề Euclid. Tính chất của hai đường thẳng song song
  17. Giải SGK Toán 7 Bài 11(Kết nối tri thức): Định lí và chứng minh định lí
  18. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 58
  19. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Bài 12 (Kết nối tri thức): Tổng các góc trong một tam giác
  21. Giải SGK Toán 7 Bài 13 (Kết nối tri thức): Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
  22. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 68
  23. Giải SGK Toán 7 Bài 14 (Kết nối tri thức): Trường hợp bằng nhau thứ hai và thứ ba của tam giác
  24. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 74
  25. Giải SGK Toán 7 Bài 15 (Kết nối tri thức): Các trường hợp bằng nhau của tam giác vuông
  26. Giải SGK Toán 7 Bài 16 (Kết nối tri thức): Tam giác cân. Đường trung trực của đoạn thẳng
  27. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 85
  28. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 4
  29. Giải SGK Toán 7 Bài 17 (Kết nối tri thức): Thu nhập và phân loại dữ liệu
  30. Giải SGK Toán 7 Bài 18 (Kết nối tri thức): Biểu đồ hình quạt tròn
  31. Giải SGK Toán 7 Bài 19 (Kết nối tri thức): Biểu đồ đoạn thẳng
  32. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 106
  33. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 5
  34. Giải SGK Toán 7 Bài 20 (Kết nối tri thức): Tỉ lệ thức
  35. Giải SGK Toán 7 Bài 21 (Kết nối tri thức): Tính chất của dãy tỉ số bằng nhau
  36. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 10
  37. Giải SGK Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận
  38. Giải SGK Toán 7 Bài 23 (Kết nối tri thức): Đại lượng tỉ lệ nghịch
  39. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 19
  40. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 6
  41. Giải SGK Toán 7 Bài 24 (Kết nối tri thức): Biểu thức đại số
  42. Giải SGK Toán 7 Bài 26 (Kết nối tri thức): Phép cộng và phép trừ đa thức một biến
  43. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 34
  44. Giải SGK Toán 7 Bài 27 (Kết nối tri thức): Phép nhân đa thức một biến
  45. Giải SGK Toán 7 Bài 28 (Kết nối tri thức): Phép chia đa thức một biến
  46. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 44
  47. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 7
  48. Giải SGK Toán 7 Bài 29 (Kết nối tri thức): Làm quen với biến cố
  49. Giải SGK Toán 7 Bài 30 (Kết nối tri thức): Làm quen với xác suất của biến cố
  50. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 56
  51. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 8
  52. Giải SGK Toán 7 Bài 31 (Kết nối tri thức): Quan hệ giữa góc và cạnh đối diện trong một tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán