Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Cánh diều

Giải SGK Toán 9 Bài 3 (Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn

Khởi động trang 88 Toán 9 Tập 1: Hình 28 minh họa một máy bay cất cánh từ vị trí A trên đường băng của sân bay và bay theo đường thẳng AB tạo với phương nằm ngang AC một góc là 20°. Sau 5 giây, máy bay ở độ cao BC = 110 m.

Khởi động trang 88 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Có thể tính khoảng cách AB bằng cách nào?

Lời giải:

Ta có thể tính khoảng cách AB dựa vào độ cao BC và góc tạo bởi đường bay với phương nằm ngang.

Xét ∆ABC vuông tại C, ta có BC = AB.sinA, suy ra AB = BCsinA.

Luyện tập 1 trang 89 Toán 9 Tập 1: Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng phần trăm của mét).

Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

⦁ Bài toán ở phần mở đầu:

Xét ∆ABC vuông tại C, ta có:

BC = AB.sinA, suy ra AB = BCsinA = 110sin20° ≈321,62 (m).

⦁ Hình 29b:

Xét ∆ABC vuông tại C, ta có:

AC = AB.cosA, suy ra AB = ACcosA=4cos81°≈25,57 (m).

Luyện tập 2 trang 90 Toán 9 Tập 1: Mặt cắt đứng của khung thép có dạng tam giác cân ABC với B^=23°, AB = 4 m (Hình 33). Tính độ dài đoạn thẳng BC (làm tròn kết quả đến hàng phần mười của mét).

Luyện tập 2 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Luyện tập 2 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Kẻ AH ⊥ BC.

Vì ∆ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến, do đó H là trung điểm của BC, nên BC = 2BH.

Xét ∆ABH vuông tại H, ta có: BH = AB.cosB = 4.cos23° ≈ 3,7 (m).

Do đó BC = 2BH ≈ 2.3,7 = 7,4 (m).

Vậy BC ≈ 7,4 m.

Bài tập

Bài 1 trang 90 Toán 9 Tập 1: Hình 35 mô tả ba vị trí A, B, C là ba đỉnh của một tam giác vuông và không đo được trực tiếp các khoảng cách từ C đến A và từ C đến B. Biết AB = 50 m, ABC^=40°. Tính các khoảng cách CA và BC (làm tròn kết quả đến hàng đơn vị của mét).

Bài 1 trang 90 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có:

⦁ CA = AB.tanABC^ = 50.tan40o ≈ 42(m).

⦁ AB = BC.cosABC^, suy ra BC = ABcosABC^=50cos40°≈65(m).

Bài 2 trang 91 Toán 9 Tập 1: Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mắt bạn Hoàng đặt tại vị trí C cách mặt đất một khoảng CB = DH = 1,64 m và cách cây một khoảng CD = BH = 6 m. Tính chiều cao AH của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn ACD bằng 38° minh hoạ ở Hình 36.

Bài 2 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ACD vuông tại D, ta có:

AD = CD.tanACD^ = 6.tan38o ≈4,69 (m).

Ta có AG = AD + DH ≈ 4,69 + 1,64 = 6,33 (m).

Vậy chiều cao AH của cây khoảng 6,33 m.

Bài 3 trang 91 Toán 9 Tập 1: Người ta cần ước lượng khoảng cách từ vị trí O đến khu đất có dạng hình thang MNPQ nhưng không thể đo được trực tiếp, khoảng cách đó được tính bằng khoảng cách từ O đến đường thẳng MN. Người ta chọn vị trí A ở đáy MN và đo được OA = 18 m, OAN^=44° (Hình 37). Tính khoảng cách từ vị trí O đến khu đất (làm tròn kết quả đến hàng phần mười của mét).

Bài 3 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Bài 3 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Gọi H là chân đường vuông góc kẻ từ O đến MN.

Xét ∆OAH vuông tại H, ta có: OH = OA.sinA = 18.sin44° ≈ 12,5 (m).

Vậy khoảng cách từ vị trí O đến khu đất khoảng 12,5 m.

Bài 4 trang 91 Toán 9 Tập 1: Một mảnh gỗ có dạng hình chữ nhật ABCD với đường chéo AC = 8 dm. Do bảo quản không tốt nên mảnh gỗ bị hỏng phía hai đỉnh B và D. Biết BAC^=64° (Hình 38). Người ta cần biết độ dài AB và AD để khôi phục lại mảnh gỗ ban đầu. Độ dài AB, AD bằng bao nhiêu decimét (làm tròn kết quả đến hàng phần mười)?

Bài 4 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại B, ta có:

AB = AC.cosBAC^ = 8.cos64o ≈ 3,5 (dm).

BC = AC.sinBAC^ = 8.sin64o ≈ 7,2 (dm).

Do ABCD là hình chữ nhật nên AD = BC ≈ 7,2 dm.

Vậy AB ≈ 3,5 dm và AD ≈ 7,2 dm.

Bài 5 trang 91 Toán 9 Tập 1: Trên mặt biển, khi khoảng cách AB từ ca nô đến chân tháp hải đăng là 250 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là ACx^=32°(Hình 39). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết AB // Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là 3,2 m.

Bài 5 trang 91 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Vì Cx // AB nên CAB^=xCA^=32° (so le trong).

Xét ∆ABC vuông tại B, ta có: BC = AB.tanCAB^ = 250.tan32o ≈ 156,2 (m).

Vậy chiều cao của tháp là khoảng 156,2 + 3,2 = 159,4 (m).

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

§2. Một số hệ thức về cạnh và góc trong tam giác vuông

§3. Ứng dụng của tỉ số lượng giác của góc nhọn

Bài tập cuối chương 4

§1. Đường tròn. Vị trí tương đối của hai đường tròn

§2. Vị trí tương đối của đường thẳng và đường tròn

§3. Tiếp tuyến của đường tròn

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 4 trang 72

Next post

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65

Bài liên quan:

Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10

Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu

Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón

Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9

Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Cánh diều | Giải bài tập Toán 9 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Cánh diều): Phương trình quy về phương trình bậc nhất một ẩn
  3. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 Bài 3 (Cánh diều): Giải hệ hai phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 1 trang 26
  6. Giải SGK Toán 9 Bài 1 (Cánh diều): Bất đẳng thức
  7. §2. Bất phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 (Cánh diều) Bài tập cuối chương 2 trang 42
  9. Giải SGK Toán 9 Chủ đề 1 (Cánh diều): Làm quen với bảo hiểm
  10. Giải SGK Toán 9 Bài 1 (Cánh diều): Căn bậc hai và căn bậc ba của số thực
  11. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số phép tính về căn bậc hai của số thực
  12. Giải SGK Toán 9 Bài 3 (Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 4 (Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  14. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 3 trang 72
  15. Giải SGK Toán 9 Bài 1 (Cánh diều): Tỉ số lượng giác của góc nhọn
  16. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông
  17. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 4 trang 92
  18. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  19. Giải SGK Toán 9 Bài 2 (Cánh diều): Vị trí tương đối của đường thẳng và đường tròn
  20. Giải SGK Toán 9 Bài 3 (Cánh diều): Tiếp tuyến của đường tròn
  21. Giải SGK Toán 9 Bài 4 (Cánh diều): Góc ở tâm. Góc nội tiếp
  22. Giải SGK Toán 9 Bài 5 (Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  23. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 5 trang 124
  24. Giải SGK Toán 9 Bài 1 (Cánh diều): Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
  25. Giải SGK Toán 9 Bài 2 (Cánh diều): Tần số. Tần số tương đối
  26. Giải SGK Toán 9 Bài 3 (Cánh diều): Tần số ghép nhóm. Tần số tương đối ghép nhóm
  27. Giải SGK Toán 9 Bài 4 (Cánh diều): Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
  28. Giải SGK Toán 9 (Cánh diều) : Bài tập cuối chương 6
  29. Giải SGK Toán 9 Chủ đề 2 (Cánh diều): Mật độ dân số
  30. Giải SGK Toán 9 Bài 1 (Cánh diều): Hàm số y = ax2 (a ≠ 0)
  31. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc hai một ẩn
  32. Giải SGK Toán 9 Bài 3 (Cánh diều): Định lí Viète
  33. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 7
  34. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
  35. Giải SGK Toán 9 Bài 2 (Cánh diều): Tứ giác nội tiếp đường tròn
  36. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 8
  37. Giải SGK Toán 9 Bài 1 (Cánh diều): Đa giác đều. Hình đa giác đều trong thực tiễn
  38. Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay
  39. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9
  40. Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ
  41. Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón
  42. Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu
  43. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10
  44. Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ
  45. Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán