Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Cánh diều

Giải SGK Toán 9 Bài 3 (Cánh diều): Định lí Viète

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 3: Định lí Viète

Khởi động trang 61 Toán 9 Tập 2: Đà Lạt là thành phố du lịch, có khí hậu mát mẻ. Nơi đây trồng nhiều loại hoa để phục vụ nhu cầu trong nước và xuất khẩu. Giả sử người ta trồng hoa trên một mảnh vườn có dạng hình chữ nhật với diện tích là 240 m2, chu vi là 68 m

Khởi động trang 61 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Làm thế nào để xác định được chiều dài, chiều rộng của mảnh vườn trồng hoa nói trên?

Lời giải:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m) (x1 > 0, x­2 > 0).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, mảnh vườn dạng hình chữ nhật có chu vi là 68 m nên nửa chu vi của mảnh vườn là 68 : 2 = 34 (m), do đó x1 + x­2 = 34.

Diện tích mảnh vườn hình chữ nhật là 240 m2, do đó x1x2 = 240.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 34x + 240 = 0.

Phương trình trên có các hệ số a = 1, b = –34, c = 240.

Do b = –34 nên b’ = –17.

Ta có: ∆’ = (–17)2 – 1.240 = 49 > 0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=−−17+491=17+7=24;x2=−−17−491=17−7=10.

Cả hai giá trị trên đều thỏa mãn điều kiện lớn hơn 0.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 24 (m) và 10 (m) (do chiều dài luôn lớn hơn chiều rộng).

I. Định lí Viète

Hoạt động 1 trang 61 Toán 9 Tập 2: Xét phương trình ax2 + bx + c = 0 (a ≠ 0). Giả sử phương trình đó có hai nghiệm là x1, x2. Tính x1 + x2; x1x2 theo các hệ số a, b, c.

Lời giải:

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

⦁ Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:

x1=−b+Δ2a,x2=−b−Δ2a.

⦁ Nếu ∆ = 0 thì phương trình có nghiệm kép:

x1=x2=−b2a.

Như vậy, với ∆ ≥ 0 thì phương trình có hai nghiệm dạng:

x1=−b+Δ2a,x2=−b−Δ2a.

Ta có:

Hoạt động 1 trang 61 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Luyện tập 1 trang 62 Toán 9 Tập 2: Cho phương trình

– 4x2 + 9x + 1 = 0.

a) Chứng minh phương trình có hai nghiệm phân biệt x1, x2.

b) Tính x1 + x2 ; x1x2.

c) Tính x12+x22.

Lời giải:

a) Phương trình có các hệ số a = –4, b = 9, c = 1,

∆ = 92 – 4.(–4).1 = 97 > 0.

Do ∆ > 0 nên phương trình đã cho có hai nghiệm phân biệt x1, x2.

b) Theo định lí Viète, ta có:

x1+x2=−9−4=94 và x1x2=1−4=−14.

c) Ta có:  x12+x22=x12+2x1x2+x22−2x1x2=x1+x22−2x1x2

=942−2⋅−14=8116+12=8916.

Luyện tập 2 trang 63 Toán 9 Tập 2: Không tính ∆, giải phương trình 4x2 – 7x + 3 = 0

Lời giải:

Phương trình có các hệ số a = 4, b = –7, c = 3.

Ta thấy a + b + c = 4 + (–7) + 3 = 0.

Do đó phương trình có nghiệm x1 = 1 và x2=34.

Luyện tập 3 trang 63 Toán 9 Tập 2: Không tính ∆, giải phương trình 2x2 – 9x – 11 = 0.

Lời giải:

Phương trình có các hệ số a = 2, b = –9, c = –11.

Ta thấy a – b + c = 2 – (–9) + (–11) = 0.

Do đó phương trình có nghiệm x1 = –1 và x2=−−112=112.

II. Tìm hai số khi biết tổng và tích

Hoạt động 2 trang 63 Toán 9 Tập 2: Cho hai số có tổng bằng 5 và tích bằng 6.

a) Gọi một số là x. Tính số còn lại theo x.

b) Lập phương trình bậc hai ẩn x.

Lời giải:

a) Vì hai số có tổng bằng 6 nên số còn lại là 5 – x.

b) Vì hai số có tích bằng 6 nên ta có:

x(5 – x) = 6

5x – x2 = 6

x2 – 5x + 6 = 0.

Vậy phương trình bậc hai ẩn x cần tìm là x2 – 5x + 6 = 0.

Luyện tập 4 trang 64 Toán 9 Tập 2: Giải bài toán nêu trong phần mở đầu.

Lời giải:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m) (x1 > 0, x­2 > 0).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, mảnh vườn dạng hình chữ nhật có chu vi là 68 m nên nửa chu vi của mảnh vườn là 68 : 2 = 34 (m), do đó x1 + x­2 = 34.

Diện tích mảnh vườn hình chữ nhật là 240 m2, do đó x1x2 = 240.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 34x + 240 = 0.

Phương trình trên có các hệ số a = 1, b = –34, c = 240.

Do b = –34 nên b’ = –17.

Ta có: ∆’ = (–17)2 – 1.240 = 49 > 0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=−−17+491=17+7=24;x2=−−17−491=17−7=10.

Cả hai giá trị trên đều thỏa mãn điều kiện lớn hơn 0.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 24 (m) và 10 (m) (do chiều dài luôn lớn hơn chiều rộng).

Bài tập

Bài 1 trang 64 Toán 9 Tập 2: Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c (a ≠ 0) thì

Bài 1 trang 64 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Lời giải:

Đáp án đúng là: D

Theo định lí Viète, ta có: x1+x2=−ba;  x1x2=ca.

Bài 2 trang 64 Toán 9 Tập 2: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Nếu phương trình ax2 + bx + c (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2=ca.

b) Nếu phương trình ax2 + bx + c (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm là x1 = –1 và nghiệm còn lại là x2=ca.

c) Nếu phương trình ax2 + bx + c (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm là x1 = –1 và nghiệm còn lại là x2=−ca.

d) Nếu phương trình ax2 + bx + c (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2=−ca.

Lời giải:

Ta có:

⦁ Nếu phương trình ax2 + bx + c (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2=ca.

⦁ Nếu phương trình ax2 + bx + c (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm là x1 = –1 và nghiệm còn lại là x2=−ca.

Vậy các phát biểu đúng là: a), c) và các phát biểu sai là: b), d).

Bài 3 trang 64 Toán 9 Tập 2: Giải thích vì sao nếu ac < 0 thì phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm là hai số trái dấu nhau.

Lời giải:

Xét phương trình ax2 + bx + c (a ≠ 0) có ac < 0, theo kết quả của Bài 2, trang 59, SGK Toán lớp 9, Tập 2 thì phương trình trên luôn có hai nghiệm phân biệt.

Khi đó, theo định lí Viète, ta có: x1x2=ca.

Mà ac < 0 nên a và c là hai số trái dấu.

Lại có a ≠ 0 nên ta suy ra được ca<0, hay x1x2 < 0.

Do đó x1, x2 là hai số trái dấu nhau.

Vậy nếu ac < 0 thì phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm là hai số trái dấu nhau.

Bài 4 trang 64 Toán 9 Tập 2: Cho phương trình 2x2 – 3x – 6 = 0.

a) Chứng minh phương trình có hai nghiệm phân biệt x1, x2.

b) Tính x1 + x2; x1x2. Chứng minh cả hai nghiệm x1, x2 đều khác 0.

c) Tính 1x1+1x2.

d) Tính x12+x22.

e) Tính |x1 – x2|.

Lời giải:

Xét phương trình: 2x2 – 3x – 6 = 0.

a) Phương trình có các hệ số a = 2, b = –3, c = –6.

Cách 1: Ta có: ∆ = (–3)2 – 4.2.(–6) = 57 > 0.

Do ∆ > 0 nên phương trình đã cho có hai nghiệm phân biệt x1, x2.

Cách 2: Ta có: ac = 2.(–6) = –12 < 0 nên theo kết quả của Bài 2, trang 59, SGK Toán lớp 9, Tập 2 thì phương trình trên luôn có hai nghiệm phân biệt x1, x2.

b) Theo định lí Viète ta có:

x1+x2=−−32=32 và x1x2=−62=−3.

Vì x1x2 = –3 ≠ 0 nên x1 ≠ 0 và x2 ≠ 0.

c) Ta có 1x1+1x2=x1+x2x1x2=32−3=−12.

d) Ta có x12+x22=x12+2x1x2+x22−2x1x2=x1+x22−2x1x2

=322−2⋅−3=94+6=334.

e) Ta có: x1−x22=x12−2x1x2+x22=x12+2x1x2+x22−4x1x2

=x1+x22−4x1x2=322−4⋅−3=94+12=574.

Mà x1−x22=x1−x2 nên ta có:

x1−x2=574=572.

Bài 5 trang 65 Toán 9 Tập 2: Không tính ∆, giải các phương trình:

a) 3x2 – x – 2 = 0;

b) –4x2 + x + 5 = 0;

c) 23x2+5−23x−5=0;

d) −32x2+4−32x+4=0.

Lời giải:

a) 3x2 – x – 2 = 0

Phương trình có các hệ số a = 3, b = –1, c = –2.

Ta thấy: a + b + c = 3 + (–1) + (–2) = 0.

Do đó phương trình có nghiệm x1 = 1 và x2=−23.

b) –4x2 + x + 5 = 0

Phương trình có các hệ số a = –4, b = 1, c = 5.

Ta thấy: a – b + c = (–4) – 1 + 5 = 0.

Do đó phương trình có nghiệm x1 = –1 và x2=−523=−536.

c) 23x2+5−23x−5=0

Phương trình có các hệ số a=23,  b=5−23,  c=−5.

Ta thấy: a+b+c=23+5−23+−5=0.

Do đó phương trình có nghiệm x1 = 1 và x2=−523=−536.

d) −32x2+4−32x+4=0

Phương trình có các hệ số a=−32,  b=4−32,  c=4.

Ta thấy: a−b+c=−32−4−32+4=0.

Do đó phương trình có nghiệm x1 = –1 và x2=−4−32=426=223.

Bài 6 trang 65 Toán 9 Tập 2: Tìm hai số trong mỗi trường hợp sau:

a) Tổng của chúng bằng 7 và tích của chúng bằng 12;

b) Tổng của chúng bằng 1 và tích của chúng bằng –6.

Lời giải:

a) Hai số cần tìm là nghiệm của phương trình x2 – 7x + 12 = 0.

Phương trình có các hệ số a = 1, b = –7, c = 12,

∆ = (–7)2 – 4.1.12 = 1 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là :

x1=−−7+12⋅1=4;x2=−−7−12⋅1=3.

Vậy hai số cần tìm là 4 và 3.

b) Hai số cần tìm là nghiệm của phương trình x2 – x – 6 = 0.

Phương trình có các hệ số a = 1, b = –1, c = –6,

∆ = (–1)2 – 4.1.(–6) = 25 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=−−1+252⋅1=3;x2=−−1−252⋅1=−2.

Vậy hai số cần tìm là 3 và –2.

Bài 7 trang 65 Toán 9 Tập 2: Bác Đạt muốn thiết kế cửa sổ có dạng hình chữ nhật với diện tích bằng 2,52 m2 và chu vi bằng 6,4 m. Tìm các kích thước của cửa sổ đó.

Lời giải:

Gọi hai kích thước của cửa sổ hình chữ nhật là x1; x­2 (m) (x1 > 0, x­2 > 0).

Ta có nửa chu vi và diện tích cửa sổ hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, cửa sổ dạng hình chữ nhật có chu vi là 6,4 m nên nửa chu vi của cửa sổ là 6,4 : 2 = 3,2 (m), do đó x1 + x­2 = 3,2.

Diện tích cửa sổ hình chữ nhật là 2,52 m2, do đó x1x2 = 2,52.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 3,2x + 2,52 = 0.

Phương trình trên có các hệ số a = 1, b = –3,2, c = 2,52.

Do b = –3,2 nên b’ = –1,6.

Ta có: ∆’ = (–1,6)2 – 1.2,52 = 0,04 > 0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=−−1,6+0,041=1,6+0,2=1,8;x2=−−1,6−0,041=1,6−0,2=1,4.

Cả hai giá trị trên đều thỏa mãn điều kiện lớn hơn 0.

Vậy chiều dài và chiều rộng của cửa sổ đó lần lượt là 1,8 (m) và 1,4 (m) (do chiều dài luôn lớn hơn chiều rộng).

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

§2. Phương trình bậc hai một ẩn

§3. Định lí Viète

Bài tập cuối chương 7

§1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

§2. Tứ giác nội tiếp đường tròn

Bài tập cuối chương 8

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18

Next post

Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng

Bài liên quan:

Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10

Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu

Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón

Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9

Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Cánh diều | Giải bài tập Toán 9 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Cánh diều): Phương trình quy về phương trình bậc nhất một ẩn
  3. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 Bài 3 (Cánh diều): Giải hệ hai phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 1 trang 26
  6. Giải SGK Toán 9 Bài 1 (Cánh diều): Bất đẳng thức
  7. §2. Bất phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 (Cánh diều) Bài tập cuối chương 2 trang 42
  9. Giải SGK Toán 9 Chủ đề 1 (Cánh diều): Làm quen với bảo hiểm
  10. Giải SGK Toán 9 Bài 1 (Cánh diều): Căn bậc hai và căn bậc ba của số thực
  11. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số phép tính về căn bậc hai của số thực
  12. Giải SGK Toán 9 Bài 3 (Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 4 (Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  14. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 3 trang 72
  15. Giải SGK Toán 9 Bài 1 (Cánh diều): Tỉ số lượng giác của góc nhọn
  16. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông
  17. Giải SGK Toán 9 Bài 3 (Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn
  18. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 4 trang 92
  19. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  20. Giải SGK Toán 9 Bài 2 (Cánh diều): Vị trí tương đối của đường thẳng và đường tròn
  21. Giải SGK Toán 9 Bài 3 (Cánh diều): Tiếp tuyến của đường tròn
  22. Giải SGK Toán 9 Bài 4 (Cánh diều): Góc ở tâm. Góc nội tiếp
  23. Giải SGK Toán 9 Bài 5 (Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  24. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 5 trang 124
  25. Giải SGK Toán 9 Bài 1 (Cánh diều): Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
  26. Giải SGK Toán 9 Bài 2 (Cánh diều): Tần số. Tần số tương đối
  27. Giải SGK Toán 9 Bài 3 (Cánh diều): Tần số ghép nhóm. Tần số tương đối ghép nhóm
  28. Giải SGK Toán 9 Bài 4 (Cánh diều): Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
  29. Giải SGK Toán 9 (Cánh diều) : Bài tập cuối chương 6
  30. Giải SGK Toán 9 Chủ đề 2 (Cánh diều): Mật độ dân số
  31. Giải SGK Toán 9 Bài 1 (Cánh diều): Hàm số y = ax2 (a ≠ 0)
  32. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc hai một ẩn
  33. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 7
  34. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
  35. Giải SGK Toán 9 Bài 2 (Cánh diều): Tứ giác nội tiếp đường tròn
  36. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 8
  37. Giải SGK Toán 9 Bài 1 (Cánh diều): Đa giác đều. Hình đa giác đều trong thực tiễn
  38. Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay
  39. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9
  40. Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ
  41. Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón
  42. Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu
  43. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10
  44. Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ
  45. Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán