Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Cánh diều

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 4 trang 92

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài tập cuối chương 4 trang 92

Bài 1 trang 92 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có đường cao AH và B^=α (Hình 40).

Bài 1 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Tỉ số HAHB bằng

A. sinα.

B. cosα.

C. tanα.

D. cotα.

b) Tỉ số HAHC bằng

A. sinα.

B. cosα.

C. tanα.

D. cotα.

c) Tỉ số HAAC bằng

A. sinα.

B. cosα.

C. tanα.

D. cotα.

Lời giải:

a) Đáp án đúng là: C

Xét ∆ABH vuông tại H, ta có tanB = HAHB hay HAHB = tanα.

b) Đáp án đúng là: D

Xét ∆ACH vuông tại H, ta có tanC = HAHC.

Xét ∆ABC vuông tại A, ta có B^+C^=90° (tổng hai góc nhọn trong tam giác vuông)

Suy ra B^ và C^ là hai góc phụ nhau nên tanC = cotB.

Do đó HAHC = tanC = cotB = cotα.

c) Đáp án đúng là: B

Xét ∆ACH vuông tại H, ta có sinC = HAAC.

Mà B^ và C^ là hai góc phụ nhau nên sinC = cosB.

Do đó HAAC = sinC = cosB = cosα.

Bài 2 trang 92 Toán 9 Tập 1: Cho hình thoi ABCD có AB = a, BAD^=2α0°<α<90°. Chứng minh:

a) BD = 2a.sinα;

b) AC = 2a.cosα.

Lời giải:

Bài 2 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Gọi O là giao điểm của đường chéo AC và BD.

Vì ABCD là hình thoi nên AC ⊥ BD tại trung điểm O của mỗi đường và AC là đường phân giác của BAD^.

Suy ra AC = 2AO, BD = 2BO và BAO^=12BAD^=12⋅2α=α.

Xét ∆ABO vuông tại O, ta có: BO = AB.sinBAO^ = a.sinα.

Do đó BD = 2BO = 2a.sinα.

b) Xét ∆ABO vuông tại O, ta có: AO = AB.cosBAO^ = a.cosα.

Do đó AC = 2AO = 2a.cosα.

Bài 3 trang 92 Toán 9 Tập 1: Trong trò chơi xích đu ở Hình 41, khi dây căng xích đu (không dãn) OA = 3 m tạo với phương thẳng đứng một góc là AOH^=43° thì khoảng cách AH từ em bé đến vị trí cân bằng là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Bài 3 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆OAH vuông tại H, ta có: AH = OA.sinAOH^ = 3.sin43o ≈ 2(m).

Vậy khoảng cách từ em bé đến vị trí cân bằng khoảng 2 m.

Bài 4 trang 92 Toán 9 Tập 1: Một người đứng ở vị trí B trên bờ sông muốn sử dụng la bàn để ước lượng khoảng cách từ vị trí đó đến một vị trí A ở trên một cù lao giữa dòng sông. Người đó đã làm như sau:

– Sử dụng la bàn, xác định được phương BA lệch với phương Nam – Bắc về hướng Đông 52°.

– Người đó di chuyển đến vị trí C, cách B một khoảng là 187 m. Sử dụng la bàn, xác định được phương CA lệch với phương Nam – Bắc về hướng Tây 27°; CB lệch với phương Nam – Bắc về hướng Tây 70° (Hình 42).

Bài 4 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Em hãy giúp người đó tính khoảng cách AB từ những dữ liệu trên (làm tròn kết quả đến hàng đơn vị của mét).

Lời giải:

Bài 4 trang 92 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Kẻ AA’ (A’ ∈ BC) theo phương Bắc – Nam và kẻ BB’, CC’ theo phương Nam – Bắc (hình vẽ). Khi đó AA’ // BB’ // CC’.

Phương BA lệch với phương Nam – Bắc về hướng Đông 52° nên B‘BA^=52°.

Phương CA lệch với phương Nam – Bắc về hướng Tây 27° nên ACC‘^=27°.

Phương CB lệch với phương Nam – Bắc về hướng Tây 70° nên BCC‘^=70°.

Do đó BCA^=BCC‘^−ACC‘^=70°−27°=43°.

Kẻ BH ⊥ AC (H ∈ AC).

Xét ∆BCH vuông tại H, ta có: BH = BC.sinBCH^ = 187.sin43o (m).

Vì AA’ // BB’ nên B‘BA^=BAA‘^=52° (hai góc so le trong).

Vì AA’ // CC’ nên A‘AB^=ACC‘^=27° (hai góc so le trong).

Do đó BAC^=BAA‘^+A‘AC^=52°+27°=79°.

Xét ∆ABH vuông tại H, ta có:

BH = AB.sinBAH^, suy ra AB = BHsinBAH^=187⋅sin43°sin79°≈130(m).

Vậy khoảng cách AB khoảng 130 mét.

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

§3. Ứng dụng của tỉ số lượng giác của góc nhọn

Bài tập cuối chương 4

§1. Đường tròn. Vị trí tương đối của hai đường tròn

§2. Vị trí tương đối của đường thẳng và đường tròn

§3. Tiếp tuyến của đường tròn

§4. Góc ở tâm. Góc nội tiếp

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Đường tròn

Next post

Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn

Bài liên quan:

Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10

Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu

Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón

Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9

Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Cánh diều | Giải bài tập Toán 9 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Cánh diều): Phương trình quy về phương trình bậc nhất một ẩn
  3. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 Bài 3 (Cánh diều): Giải hệ hai phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 1 trang 26
  6. Giải SGK Toán 9 Bài 1 (Cánh diều): Bất đẳng thức
  7. §2. Bất phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 (Cánh diều) Bài tập cuối chương 2 trang 42
  9. Giải SGK Toán 9 Chủ đề 1 (Cánh diều): Làm quen với bảo hiểm
  10. Giải SGK Toán 9 Bài 1 (Cánh diều): Căn bậc hai và căn bậc ba của số thực
  11. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số phép tính về căn bậc hai của số thực
  12. Giải SGK Toán 9 Bài 3 (Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 4 (Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  14. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 3 trang 72
  15. Giải SGK Toán 9 Bài 1 (Cánh diều): Tỉ số lượng giác của góc nhọn
  16. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông
  17. Giải SGK Toán 9 Bài 3 (Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn
  18. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  19. Giải SGK Toán 9 Bài 2 (Cánh diều): Vị trí tương đối của đường thẳng và đường tròn
  20. Giải SGK Toán 9 Bài 3 (Cánh diều): Tiếp tuyến của đường tròn
  21. Giải SGK Toán 9 Bài 4 (Cánh diều): Góc ở tâm. Góc nội tiếp
  22. Giải SGK Toán 9 Bài 5 (Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  23. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 5 trang 124
  24. Giải SGK Toán 9 Bài 1 (Cánh diều): Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
  25. Giải SGK Toán 9 Bài 2 (Cánh diều): Tần số. Tần số tương đối
  26. Giải SGK Toán 9 Bài 3 (Cánh diều): Tần số ghép nhóm. Tần số tương đối ghép nhóm
  27. Giải SGK Toán 9 Bài 4 (Cánh diều): Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
  28. Giải SGK Toán 9 (Cánh diều) : Bài tập cuối chương 6
  29. Giải SGK Toán 9 Chủ đề 2 (Cánh diều): Mật độ dân số
  30. Giải SGK Toán 9 Bài 1 (Cánh diều): Hàm số y = ax2 (a ≠ 0)
  31. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc hai một ẩn
  32. Giải SGK Toán 9 Bài 3 (Cánh diều): Định lí Viète
  33. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 7
  34. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
  35. Giải SGK Toán 9 Bài 2 (Cánh diều): Tứ giác nội tiếp đường tròn
  36. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 8
  37. Giải SGK Toán 9 Bài 1 (Cánh diều): Đa giác đều. Hình đa giác đều trong thực tiễn
  38. Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay
  39. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9
  40. Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ
  41. Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón
  42. Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu
  43. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10
  44. Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ
  45. Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán