Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Cánh diều

Giải SGK Toán 9 Bài 2 (Cánh diều): Vị trí tương đối của đường thẳng và đường tròn

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 2: Vị trí tương đối của đường thẳng và đường tròn

Khởi động trang 101 Toán 9 Tập 1: Vị trí của Mặt Trời so với đường chân trời (Hình 19) gợi nên hình ảnh vị trí tương đối của đường thẳng và đường tròn.

Khởi động trang 101 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Làm thế nào để xác định được vị trí tương đối của đường thẳng và đường tròn?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Ta có thể nhận biết vị trí tương đối của đường thẳng a và đường tròn (O; R) thông qua hệ thức giữa khoảng cách d từ tâm O đến đường thẳng a và bán kính R như bảng sau:

Vị trí tương đối

của đường thẳng và đường tròn

Số

điểm chung

Hệ thức giữa d và R

Đường thẳng và đường tròn cắt nhau

2

d < R

 

Đường thẳng và đường tròn tiếp xúc nhau

1

d = R

Đường thẳng và đường tròn không giao nhau

0

d > R

 

Hoạt động 1 trang 101 Toán 9 Tập 1: Quan sát Hình 20.

Hoạt động 1 trang 101 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Cho biết đường thẳng a và đường tròn (O; R) có bao nhiêu điểm chung.

b) So sánh độ dài đoạn thẳng OH và R.

Lời giải:

a) Đường thẳng a và đường tròn (O; R) có 2 điểm chung.

b) Ta có OH và OM lần lượt là đường vuông góc và đường xiên kẻ từ O đến đường thẳng a.

Do đó OH < OM hay OH < d.

Luyện tập 1 trang 102 Toán 9 Tập 1: Hãy chỉ ra một số hiện tượng trong thực tiễn gợi nên hình ảnh của đường thẳng và đường tròn cắt nhau.

Lời giải:

Một số hiện tượng trong thực tiễn gợi nên hình ảnh của đường thẳng và đường tròn cắt nhau: biển báo giao thông (chẳng hạn biển cấm đường), đĩa có họa tiết kẻ caro, …

Hoạt động 2 trang 102 Toán 9 Tập 1: Trong bức ảnh ở Hình 22, đường ray và bánh xe gợi nên hình ảnh đường thẳng và đường tròn tiếp xúc nhau. Theo em, đường thẳng và đường tròn đó có bao nhiêu điểm chung?

Hoạt động 2 trang 102 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Đường thẳng và đường tròn đó có 1 điểm chung.

Luyện tập 2 trang 102 Toán 9 Tập 1: Cho tam giác ABC vuông tại A, AB = 3 cm, BC = 5 cm. Đường thẳng AB có tiếp xúc với đường tròn (C; 4 cm) hay không? Vì sao?

Lời giải:

Luyện tập 2 trang 102 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2

Suy ra AC2 = BC2 – AB2 = 52 – 32 = 16.

Do đó AC = 4 cm (do AC > 0).

Vì CA ⊥ AB tại A nên khoảng cách từ điểm C đến đường thẳng AB bằng CA.

Mà AC = 4 cm nên khoảng cách từ tâm C của đường tròn (C; 4 cm) đến đường thẳng AB bằng bán kính của đường tròn.

Vậy đường thẳng AB tiếp xúc với đường tròn (C; 4 cm).

Hoạt động 3 trang 103 Toán 9 Tập 1: Trong Hình 25, cột thẳng đứng và biển quảng cáo có dạng hình tròn gợi nên hình ảnh của đường thẳng và đường tròn không giao nhau. Theo em, đường thẳng và đường tròn không giao nhau thì chúng có điểm chung hay không?

Hoạt động 3 trang 103 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Đường thẳng và đường tròn không giao nhau thì chúng không có điểm chung.

Hoạt động 4 trang 103 Toán 9 Tập 1: Quan sát Hình 26.

Hoạt động 4 trang 103 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Cho biết đường thẳng a và đường tròn (O; R) có bao nhiêu điểm chung.

b) So sánh độ dài đoạn thẳng OH và R.

Lời giải:

a) Đường thẳng a và đường tròn (O; R) không có điểm chung.

b) OH > R.

Luyện tập 3 trang 104 Toán 9 Tập 1: Cho điểm O và đường thẳng a thỏa mãn khoảng cách từ O đến đường thẳng a bằng 4 cm. Xác định vị trí tương đối của đường thẳng a và các đường tròn (O; 3 cm), (O; 4 cm), (O; 5 cm).

Lời giải:

Luyện tập 3 trang 104 Toán 9 Tập 1 Cánh diều | Giải Toán 9

– Vì 4 > 3 nên khoảng cách từ O đến đường thẳng a lớn hơn bán kính của đường tròn (O; 3 cm). Vậy đường thẳng a và đường tròn (O; 3 cm) không giao nhau.

– Vì khoảng cách từ O đến đường thẳng a bằng bán kính của đường tròn (O; 4 cm). Vậy đường thẳng a và đường tròn (O; 4 cm) tiếp xúc nhau.

– Vì 4 < 5 nên khoảng cách từ O đến đường thẳng a nhỏ hơn bán kính của đường tròn (O; 5 cm). Vậy đường thẳng a và đường tròn (O; 5 cm) cắt nhau.

Bài tập

Bài 1 trang 104 Toán 9 Tập 1: Đồng hồ treo tường trang trí ở Hình 29 gợi nên vị trí tương đối của đường thẳng và đường tròn.

Bài 1 trang 104 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Quan sát Hình 29 và chỉ ra một hình ảnh đường thẳng và đường tròn:

a) Cắt nhau;

b) Tiếp xúc nhau;

c) Không giao nhau.

Lời giải:

a) Đường thẳng màu đen cắt đường tròn màu cam.

b) Đường thẳng màu đen tiếp xúc với đường tròn màu xanh mạ non.

c) Đường thẳng màu vàng không giao nhau với đường tròn màu đỏ.

Bài 2 trang 104 Toán 9 Tập 1: Trong Hình 30, mép ngoài cửa ra vào có dạng một phần của đường tròn bán kính 1,6 m. Hãy tính chiều cao HK của cửa đó (làm tròn kết quả đến hàng phần mười của mét), biết AH = 0,9 m.

Bài 2 trang 104 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆OAH vuông tại H, theo định lý Pythagore ta có:

OA2 = OH2 + AH2

Suy ra OH2 = OA2 – AH2 = 1,62 – 0,92 = 1,75.

Do đó OH = 1,75=74=72(m).

Khi đó, HK = OH + OK = 72+1,6≈2,9 (m).

Vậy chiều cao của cửa là khoảng 2,9 mét.

Bài 3 trang 104 Toán 9 Tập 1: Trên mặt phẳng, một vật nhỏ chuyển động trên đường tròn tâm O bán kính 2 m, một vật khác chuyển động trên đường thẳng a sao cho khoảng cách từ điểm O đến đường thẳng a bằng 3 m. Hai vật nhỏ có bao giờ gặp nhau không?

Lời giải:

Vì 3 > 2 nên khoảng cách từ O đến đường thẳng a lớn hơn bán kính của đường tròn (O; 2 m).

Vậy đường thẳng a và đường tròn (O; 2 m) không giao nhau nên hai vật nhỏ không bao giờ gặp nhau.

Bài 4 trang 105 Toán 9 Tập 1: Cho bốn điểm O, M, N, P cùng nằm trên một đường thẳng sao cho điểm M nằm giữa hai điểm O và N; điểm N nằm giữa hai điểm M và P. Gọi a, b, c lần lượt là các đường thẳng đi qua M, N, P và vuông góc với đường thẳng OP. Xác định vị trí tương đối của mỗi đường thẳng a, b, c và đường tròn (O; ON).

Lời giải:

Bài 4 trang 105 Toán 9 Tập 1 Cánh diều | Giải Toán 9

– Vì điểm M nằm giữa hai điểm O và N nên OM < ON suy ra khoảng cách từ O đến đường thẳng a nhỏ hơn bán kính của đường tròn (O; ON). Vậy đường thẳng a và đường tròn (O; ON) cắt nhau.

– Vì khoảng cách từ O đến đường thẳng b (là ON) bằng bán kính của đường tròn (O; ON). Vậy đường thẳng b và đường tròn (O; ON) tiếp xúc nhau.

– Vì điểm M nằm giữa hai điểm O và N; điểm N nằm giữa hai điểm M và P nên điểm N nằm giữa hai điểm O và P.

Suy ra OP > ON nên khoảng cách từ O đến đường thẳng c lớn hơn bán kính của đường tròn (O; ON). Vậy đường thẳng b và đường tròn (O; ON) không giao nhau.

Bài 5 trang 105 Toán 9 Tập 1: Cho điểm O và đường thẳng a không đi qua O.

a) Vẽ điểm H là hình chiếu của điểm O trên đường thẳng a.

b) Từ đó, vẽ ba đường tròn tâm O lần lượt: không giao với đường thẳng a; tiếp xúc với đường thẳng a; cắt đường thẳng a tại hai điểm phân biệt.

Lời giải:

a)

Bài 5 trang 105 Toán 9 Tập 1 Cánh diều | Giải Toán 9

b)

Bài 5 trang 105 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Đường tròn (O; OM) không giao với đường thẳng a;

Đường tròn (O: OH) tiếp xúc với đường thẳng a;

Đường tròn (O; OK) cắt đường thẳng a tại hai điểm A và B phân biệt.

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

§1. Đường tròn. Vị trí tương đối của hai đường tròn

§2. Vị trí tương đối của đường thẳng và đường tròn

§3. Tiếp tuyến của đường tròn

§4. Góc ở tâm. Góc nội tiếp

§5. Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên

Bài tập cuối chương 5

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 3 (Chân trời sáng tạo): Góc ở tâm, góc nội tiếp

Next post

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80

Bài liên quan:

Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10

Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu

Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón

Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9

Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Cánh diều | Giải bài tập Toán 9 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Cánh diều): Phương trình quy về phương trình bậc nhất một ẩn
  3. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 Bài 3 (Cánh diều): Giải hệ hai phương trình bậc nhất hai ẩn
  5. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 1 trang 26
  6. Giải SGK Toán 9 Bài 1 (Cánh diều): Bất đẳng thức
  7. §2. Bất phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 (Cánh diều) Bài tập cuối chương 2 trang 42
  9. Giải SGK Toán 9 Chủ đề 1 (Cánh diều): Làm quen với bảo hiểm
  10. Giải SGK Toán 9 Bài 1 (Cánh diều): Căn bậc hai và căn bậc ba của số thực
  11. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số phép tính về căn bậc hai của số thực
  12. Giải SGK Toán 9 Bài 3 (Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 4 (Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  14. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 3 trang 72
  15. Giải SGK Toán 9 Bài 1 (Cánh diều): Tỉ số lượng giác của góc nhọn
  16. Giải SGK Toán 9 Bài 2 (Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông
  17. Giải SGK Toán 9 Bài 3 (Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn
  18. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 4 trang 92
  19. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  20. Giải SGK Toán 9 Bài 3 (Cánh diều): Tiếp tuyến của đường tròn
  21. Giải SGK Toán 9 Bài 4 (Cánh diều): Góc ở tâm. Góc nội tiếp
  22. Giải SGK Toán 9 Bài 5 (Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  23. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 5 trang 124
  24. Giải SGK Toán 9 Bài 1 (Cánh diều): Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
  25. Giải SGK Toán 9 Bài 2 (Cánh diều): Tần số. Tần số tương đối
  26. Giải SGK Toán 9 Bài 3 (Cánh diều): Tần số ghép nhóm. Tần số tương đối ghép nhóm
  27. Giải SGK Toán 9 Bài 4 (Cánh diều): Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
  28. Giải SGK Toán 9 (Cánh diều) : Bài tập cuối chương 6
  29. Giải SGK Toán 9 Chủ đề 2 (Cánh diều): Mật độ dân số
  30. Giải SGK Toán 9 Bài 1 (Cánh diều): Hàm số y = ax2 (a ≠ 0)
  31. Giải SGK Toán 9 Bài 2 (Cánh diều): Phương trình bậc hai một ẩn
  32. Giải SGK Toán 9 Bài 3 (Cánh diều): Định lí Viète
  33. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 7
  34. Giải SGK Toán 9 Bài 1 (Cánh diều): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
  35. Giải SGK Toán 9 Bài 2 (Cánh diều): Tứ giác nội tiếp đường tròn
  36. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 8
  37. Giải SGK Toán 9 Bài 1 (Cánh diều): Đa giác đều. Hình đa giác đều trong thực tiễn
  38. Giải SGK Toán 9 Bài 2 (Cánh diều): Phép quay
  39. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 9
  40. Giải SGK Toán 9 Bài 1 (Cánh diều): Hình trụ
  41. Giải SGK Toán 9 Bài 2 (Cánh diều): Hình nón
  42. Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu
  43. Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 10
  44. Giải SGK Toán 9 Chủ đề 3 (Cánh diều): Tạo đồ dùng dạng hình nón, hình trụ
  45. Giải SGK Toán 9 (Cánh diều): Thực hành phần mền Geogebra

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán