Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Kết nối

Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng

Mở đầu trang 21 Toán 9 Tập 2: Bác An có 40 m hàng rào lưới thép. Bác muốn dùng nó để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật có diện tích 96 m2 để trồng rau. Tính chiều dài và chiều rộng của mảnh vườn đó.

Mở đầu trang 21 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được bài toán trên như sau:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x­2 = 20.

Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.

Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và Δ=4=2.

Do đó phương trình có hai nghiệm là: x1=10+21=12; x2=10−21=8.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).

1. Định lí Viète

HĐ1 trang 21 Toán 9 Tập 2: Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0). Giả sử ∆ = b2 – 4ac ≥ 0.

Nhắc lại công thức tính hai nghiệm x­1, x2 của phương trình trên.

Lời giải:

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

⦁ Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:

x1=−b+Δ2a, x1=−b−Δ2a.

⦁ Nếu ∆ = 0 thì phương trình có nghiệm kép:

x1=x2=−b2a.

HĐ2 trang 21 Toán 9 Tập 2: Từ kết quả HĐ1, hãy tính x1 + x2 và x1x2.

Lời giải:

Ta có:

⦁ x1+x2=−b+Δ2a+−b−Δ2a=−2b2a=−ba;

⦁ x1x2=−b+Δ2a⋅−b−Δ2a=−b+Δ−b−Δ2a2

=−b+Δ−b−Δ2a2=−b2−Δ24a2

=b2−b2−4ac4a2=4ac4a2=ca.

Luyện tập 1 trang 22 Toán 9 Tập 2: Không giải phương trình, hãy tính biệt thức ∆ (hoặc ∆’) để kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của các phương trình bậc hai sau:

a) 2x2 – 7x + 3 = 0;

b) 25x2 – 20x + 4 = 0;

c) 22x2−4=0.

Lời giải:

a) 2x2 – 7x + 3 = 0

Ta có ∆ = (–7)2 – 4.2.3 = 25 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=−−72=72; x1x2=32.

b) 25x2 – 20x + 4 = 0

Ta có ∆’ = (–10)2 – 25.4 = 0 nên phương trình có hai nghiệm trùng nhau x1, x2.

Theo định lí Viète, ta có:

x1+x2=−−2025=45; x1x2=425.

c) 22x2−4=0.

Ta có Δ‘=02–22⋅−4=82>0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=−022=0; x1x2=−422=−2.

Tranh luận trang 22 Toán 9 Tập 2: Tròn nói: “Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình x2 – x + 1 = 0 đều bằng 1”.

Ý kiến của em thế nào?

Lời giải:

Ta có ∆ = (–1)2 – 4.1.1 = –3 < 0 nên phương trình vô nghiệm.

Do đó, không tính được tổng và tích các nghiệm của phương trình x2 – x + 1 = 0.

Vậy bạn Tròn nói sai.

2. Áp dụng định lí Viète để tính nhẩm nghiệm

HĐ3 trang 22 Toán 9 Tập 2: Cho phương trình 2x2 – 7x + 5 = 0.

a) Xác định các hệ số a, b, c rồi tính a + b + c.

b) Chứng tỏ rằng x­1 = 1 là một nghiệm của phương trình.

c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.

Lời giải:

a) Ta có a = 2, b = –7, c = 5 và a + b + c = 2 + (–7) + 5 = 0.

b) Thay x1 = 1 vào phương trình 2x2 – 7x + 5 = 0, ta được:

2.12 – 7.1 + 5 = 0 (đúng).

Vậy x­1 = 1 là một nghiệm của phương trình 2x2 – 7x + 5 = 0.

c) Theo định lí Viète, ta có: x1+x2=−−72=72.

Hay 1+x2=72, suy ra x2=72−1=52.

Vậy x2=52.

HĐ4 trang 22 Toán 9 Tập 2: Cho phương trình 3x2 + 5x + 2 = 0.

a) Xác định các hệ số a, b, c rồi tính a – b + c.

b) Chứng tỏ rằng x1 = –1 là một nghiệm của phương trình.

c) Dùng định lí Viète để tìm nghiệm còn lại x2 của phương trình.

Lời giải:

a) Ta có a = 3, b = 5, c = 2 và a – b + c = 3 – 5 + 2 = 0.

b) Thay x1 = –1 vào phương trình 3x2 + 5x + 2 = 0, ta được:

3.(–1)2 + 5.(–1) + 2 = 0 (đúng).

Vậy x­1 = –1 là một nghiệm của phương trình 3x2 + 5x + 2 = 0.

c) Theo định lí Viète, ta có: x1+x2=−53.

Hay −1+x2=−53, suy ra x2=−53+1=−23.

Vậy x2=−23.

Luyện tập 2 trang 23 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:

a) 3x2 – 11x + 8 = 0;

b) 4x2 + 15x + 11 = 0;

c) x2+22x+2=0, biết phương trình có một nghiệm là x=−2.

Lời giải:

a) Ta có a + b + c = 3 + (–11) + 8 = 0 nên phương trình có hai nghiệm x1 = 1, x2=83.

b) Ta có a – b + c = 4 – 15 + 11 = 0 nên phương trình có hai nghiệm x1 = –1, x2=−114.

c) Giả sử phương trình có một nghiệm x1=−2 và nghiệm còn lại là x­2.

Theo định lí Viète, ta có: x­1x2 = 2.

Do đó x2=2x1=2−2=−2.

Vậy phương trình có hai nghiệm x1=x2=−2.

Thử thách nhỏ trang 23 Toán 9 Tập 2: Vuông đố Tròn: “Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.”

Tròn trả lời: “Tớ tìm ra rồi! Đó là phương trình x2 + x + 1 = 0”.

Em có đồng ý với ý kiến của Tròn không? Vì sao?

Lời giải:

Xét phương trình x2 + x + 1 = 0 có ∆ = 12 – 4.1.1 = –3 < 0.

Do đó phương trình trên vô nghiệm.

Vậy em không đồng ý với ý kiến của Tròn.

3. Tìm hai số khi biết tổng và tích của chúng

HĐ5 trang 23 Toán 9 Tập 2: Giả sử hai số có tổng S = 5 và tích P = 6. Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.

a) Gọi một số là x. Tính số kia theo x.

b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.

Lời giải:

a) Số còn lại là 5 – x.

b) Tích của hai số x và 5 – x là: x(5 – x).

Theo bài, ta có:

x(5 – x) = 6

5x – x2 = 6

x2 – 5x + 6 = 0.

Ta có ∆ = (–5)2 – 4.1.6 = 1 > 0.

Do đó phương trình có hai nghiệm phân biệt:

x1=5+12⋅1=3, x2=5−12⋅1=2.

Luyện tập 3 trang 24 Toán 9 Tập 2: Tìm hai số biết tổng của chúng bằng –11, tích của chúng bằng 28.

Lời giải:

Hai số cần tìm là hai nghiệm của phương trình x2 + 11x + 28 = 0.

Ta có ∆ = 112 – 4.1.28 = 9 > 0 và Δ=9=3.

Suy ra phương trình có hai nghiệm x1=−11+32⋅1=−4, x2=−11−32⋅1=−7.

Vậy hai số cần tìm là –4 và –7.

Vận dụng trang 24 Toán 9 Tập 2: Giải bài toán trong tình huống mở đầu.

Lời giải:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x­2 = 20.

Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.

Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và Δ=4=2.

Do đó phương trình có hai nghiệm là: x1=10+21=12; x2=10−21=8.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).

Bài tập

Bài 6.23 trang 24 Toán 9 Tập 2: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:

а) x2 – 12x + 8 = 0;

b) 2x2 + 11x – 5 =0;

c) 3x2 – 10 = 0;

d) x2 – x + 3 = 0.

Lời giải:

a) x2 – 12x + 8 = 0.

Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1 + x2 = 12; x1x2 = 8.

b) 2x2 + 11x – 5 =0.

Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=−112;x1x2=−52.

c) 3x2 – 10 = 0.

Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=−03=0; x1x2=−103.

d) x2 – x + 3 = 0.

Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.

Bài 6.24 trang 24 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:

а) 2x2 – 9x + 7 = 0;

b) 3x2 + 11x + 8 = 0;

c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.

Lời giải:

a) Ta có: a + b + c = 2 + (–9) + 7 = 0 nên phương trình có hai nghiệm: x1 = 1; x2=72.

b) Ta có: a – b + c = 3 – 11 + 8 = 0 nên phương trình có hai nghiệm: x1 = –1; x2=−83.

c) Gọi x2­ là nghiệm còn lại của phương trình.

Theo định lí Viète, ta có: x1x2=27.

Do đó x2=27:x1=27:2=17.

Vậy phương trình có hai nghiệm là x1 = 2 và x2=17.

Bài 6.25 trang 24 Toán 9 Tập 2: Tìm hai số u và v, biết:

a) u + v = 20, uv = 99;

b) u + v = 2, uv = 15.

Lời giải:

a) Vì u + v = 20, uv = 99 nên u và v là hai nghiệm của phương trình x2 – 20x + 99 = 0.

Ta có ∆’ = (–10)2 – 1.99 = 1 > 0 và Δ‘=1.

Suy ra phương trình có hai nghiệm x1=10+11=11; x2=10−11=9.

Vậy u = 11; v = 9 hoặc u = 9; v = 11.

b) Vì u + v = 2, uv = 15 nên u và v là hai nghiệm của phương trình x2 – 2x + 15 = 0.

Ta có ∆’ = (–1)2 – 1.15 = –14 < 0 nên phương trình trên vô nghiệm.

Vậy không có số u và v nào thỏa mãn yêu cầu đề bài.

Bài 6.26 trang 24 Toán 9 Tập 2: Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a(x – x­1)(x – x2).

Áp dụng: Phân tích các đa thức sau thành nhân tử:

a) x2 + 11x + 18;

b) 3x2 + 5x – 2.

Lời giải:

⦁ Phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 nên theo định lí Viète, ta có:

x1+x2=−ba và x1x2=ca.

Suy ra b = –a(x1 + x2) và c = ax1x2.

Do đó:

ax2 + bx + c = ax2 – a(x1 + x2)x + ax1x2

= ax2 – ax1x – ax2x + ax1x2

= ax(x – x1) – ax2(x – x1)

= a(x – x1)(x – x2).

Vậy nếu phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử là: ax2 + bx + c = a(x – x­1)(x – x2).

⦁ Áp dụng: Phân tích các đa thức thành nhân tử:

a) x2 + 11x + 18.

Phương trình x2 + 11x + 18 = 0 có ∆ = 112 – 4.1.18 = 49 > 0 và Δ=49=7.

Do đó phương trình có hai nghiệm phân biệt là:

x1=−11+72⋅1=−2; x2=−11−72⋅1=−9.

Vậy đa thức x2 + 11x + 18 phân tích được thành nhân tử như sau:

x2 + 11x + 18 = (x + 2)(x + 9).

b) 3x2 + 5x – 2.

Phương trình 3x2 + 5x – 2 = 0 có ∆ = 52 – 4.3.(–2) = 49 > 0 và Δ=49=7.

Do đó phương trình có hai nghiệm phân biệt là:

x1=−5+72⋅3=13;x2=−5−72⋅3=−2.

Vậy đa thức 3x2 + 5x – 2 phân tích được thành nhân tử như sau:

3x2+5x–2=3x−13x+2.

Bài 6.27 trang 24 Toán 9 Tập 2: Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m. Tính các kích thước của bể bơi này.

Lời giải:

Gọi hai kích thước của bể bơi hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích bể bơi hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, bể bơi hình chữ nhật có chu vi 74 m nên nửa chu vi bể bơi hình chữ nhật là 74 : 2 = 37 (m), do đó x1 + x­2 = 37.

Diện tích bể bơi hình chữ nhật là 300 m2, do đó x1x2 = 300.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 37x + 300 = 0.

Ta có ∆ = (–37)2 – 4.1.300 = 169 > 0 và Δ=169=13.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=37+132⋅1=25; x2=37−132⋅1=12.

Vậy chiều dài và chiều rộng của bể bơi lần lượt là 25 m và 12 m (do chiều dài luôn lớn hơn chiều rộng).

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 18

Bài 20. Định lí Viète và ứng dụng

Bài 21. Giải bài toán bằng cách lập phương trình

Luyện tập chung trang 28

Bài tập cuối chương VI

Bài 22. Bảng tần số và biểu đồ tần số

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 3 (Cánh diều): Định lí Viète

Next post

Giải SGK Toán 9 Bài 2 (Chân trời sáng tạo): Xác suất của biến cố

Bài liên quan:

Giải SGK Toán 9 (Kết nối tri thức): Bài tập ôn tập cuối năm

Giải SGK Toán 9 (Kết nối tri thức): Gene trội trong các thế hệ lai

Giải SGK Toán 9 (Kết nối tri thức): Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel

Giải SGK Toán 9 (Kết nối tri thức): Vẽ hình đơn giản với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 10

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 106

Bài 32. Hình cầu

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Kết nối tri thức | Giải bài tập Toán 9 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Kết nối tri thức): Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
  3. Giải SGK Toán 9 Bài 2 (Kết nối tri thức): Giải hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 19
  5. Giải SGK Toán 9 Bài 3 (Kết nối tri thức): Giải bài toán bằng cách lập hệ phương trình
  6. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 1 trang 24
  7. Giải SGK Toán 9 Bài 4 (Kết nối tri thức): Phương trình quy về phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
  9. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 36
  10. Giải SGK Toán 9 Bài 6 (Kết nối tri thức): Bất phương trình bậc nhất một ẩn
  11. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 2 trang 42
  12. Giải SGK Toán 9 Bài 7 (Kết nối tri thức): Căn bậc hai và căn thức bậc hai
  13. Giải SGK Toán 9 Bài 8 (Kết nối tri thức): Khai căn bậc hai với phép nhân và phép chia
  14. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 52
  15. Giải SGK Toán 9 Bài 9 (Kết nối tri thức): Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
  16. Giải SGK Toán 9 Bài 10 (Kết nối tri thức): Căn bậc ba và căn thức bậc ba
  17. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 63
  18. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65
  19. Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn
  20. Giải SGK Toán 9 Bài 12 (Kết nối tri thức): Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  21. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80
  22. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 4 trang 81
  23. Giải SGK Toán 9 Bài 13 (Kết nối tri thức): Mở đầu về đường tròn
  24. Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn
  25. Giải SGK Toán 9 Bài 15 (Kết nối tri thức): Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  26. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 96
  27. Giải SGK Toán 9 Bài 16 (Kết nối tri thức): Vị trí tương đối của đường thẳng và đường tròn
  28. Giải SGK Toán 9 Bài 17 (Kết nối tri thức): Vị trí tương đối của hai đường tròn
  29. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 108
  30. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 5
  31. Giải SGK Toán 9 (Kết nối tri thức): Pha chế dung dịch theo nồng độ yêu cầu
  32. Giải SGK Toán 9 (Kết nối tri thức): Tính chiều cao và xác định khoảng cách
  33. Giải SGK Toán 9 Bài 18 (Kết nối tri thức): Hàm số y = ax^2 (a ≠ 0)
  34. Giải SGK Toán 9 Bài 19 (Kết nối tri thức): Phương trình bậc hai một ẩn
  35. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18
  36. Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình
  37. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 28
  38. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 6
  39. Giải SGK Toán 9 Bài 22 (Kết nối tri thức): Bảng tần số và biểu đồ tần số
  40. Giải SGK Toán 9 Bài 23 (Kết nối tri thức): Bảng tần số tương đối và biểu đồ tần số tương đối
  41. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 43
  42. Giải SGK Toán 9 Bài 24 (Kết nối tri thức): Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
  43. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 7
  44. Giải SGK Toán 9 Bài 25 (Kết nối tri thức): Phép thử ngẫu nhiên và không gian mẫu
  45. Giải SGK Toán 9 Bài 26 (Kết nối tri thức): Xác suất của biến cố liên quan tới phép thử
  46. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 64
  47. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 8
  48. Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp
  49. Giải SGK Toán 9 Bài 28 (Kết nối tri thức): Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác
  50. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78
  51. Giải SGK Toán 9 Bài 29 (Kết nối tri thức): Tứ giác nội tiếp
  52. Giải SGK Toán 9 Bài 30 (Kết nối tri thức): Đa giác đều

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán