Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Kết nối

Giải SGK Toán 9 Bài 26 (Kết nối tri thức): Xác suất của biến cố liên quan tới phép thử

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 26: Xác suất của biến cố liên quan tới phép thử

Mở đầu trang 60 Toán 9 Tập 2: Màu hạt của đậu Hà Lan có hai kiểu hình là vàng và xanh. Có hai gene ứng với hai kiểu hình này là allele trội A và allele lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn. Có hai gene ứng với hai kiểu hình này là allele trội B và allele lặn b. Khi cho lai hai cây đậu Hà Lan, cặp gene của cây con được lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ. Phép thử là cho lai hai cây đậu Hà Lan, trong đó cây bố và cây mẹ có kiểu hình là “hạt vàng và trơn”. Hỏi xác suất để cây con có kiểu hình như cây bố và cây mẹ là bao nhiêu?

Lời giải:

Sau bài học này, chúng ta có thể giải quyết được bài toán trên như sau:

Giả sử cây bố có kiểu gene là (AA, Bb), cây mẹ có kiểu gene là (Aa, Bb).

Khi đó yêu cầu bài toán trở thành tính xác suất để cây con có hạt vàng và trơn.

Ở Bài 25, ta đã biết không gian mẫu là:

Ω = {AA, BB); (AA, Bb); (AA, bB); (AA, bb); (Aa, BB); (Aa, Bb); (Aa, bB); (Aa, bb)}.

Tập Ω có 8 phần tử. Phép thử có 8 kết quả có thể. Do cây con chọn ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ nên các kết quả có thể trên là đổng khả năng.

Gọi M là biến cố “Cây con có hạt vàng và trơn”.

Cây con có hạt vàng và trơn nếu trong gene màu hạt có ít nhất một allele trội A và trong gene dạng hạt có ít nhất một allele trội B.

Có 6 kết quả thuận lợi cho biến cố M là (AA, BB); (AA, Bb); (AA, bB); (Aa, BB); (Aa, Bb); (Aa, bB).

Vậy PM=68=34.

1. Kết quả thuận lợi cho một biến cố liên quan tới phép thử

HĐ trang 60 Toán 9 Tập 2: Bạn Tùng gieo một con xúc xắc liên tiếp hai lần. Xét các biến cố sau:

E: “Cả hai lần gieo con xúc xắc đều xuất hiện mặt có số chấm là số nguyên tố”;

F: “Cả hai lần gieo con xúc xắc đều không xuất hiện mặt có số chấm là số chẵn”.

a) Phép thử là gì?

b) Giả sử số chấm xuất hiện trên con xúc xắc trong lần gieo thứ nhất, thứ hai tương ứng là 2 và 5 chấm. Khi đó, biến cố nào xảy ra? Biến cố nào không xảy ra?

Lời giải:

a) Phép thử là bạn Tùng gieo một con xúc xắc liên tiếp hai lần.

b) Vì 2 và 5 đều là số nguyên tố nên biến cố A xảy ra.

Vì 2 là số chẵn nên biến cố B không xảy ra.

Luyện tập 1 trang 61 Toán 9 Tập 2: Bạn Hoàng lấy ngẫu nhiên một quả cầu từ một túi đựng 2 quả cầu gồm một quả màu đen và một quả màu trắng, có cùng khối lượng và kích thước. Bạn Hải rút ngẫu nhiên một tấm thẻ từ một hộp đựng 3 tấm thẻ A, B, C.

a) Mô tả không gian mẫu của phép thử.

b) Xét các biến cố sau:

E: “Bạn Hoàng lấy được quả cầu màu đen”;

F: “Bạn Hoàng lấy được quả cầu màu trắng và bạn Hải không rút được tấm thẻ A”. Hãy mô tả các kết quả thuận lợi cho hai biến cố E và F.

Lời giải:

a) Phép thử là bạn Hoàng lấy ngẫu nhiên một quả cầu từ một túi đựng 2 quả cầu gồm một quả màu đen và một quả màu trắng, có cùng khối lượng và kích thước; bạn Hải rút ngẫu nhiên một tấm thẻ từ một hộp đựng 3 tấm thẻ A, B, C.

Kết quả của phép thử là (a, b), trong đó a và b tương ứng là màu của quả cầu lấy được (màu đen (Đ), màu trắng (T)) và chữ ghi trên tấm thẻ rút được.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Luyện tập 1 trang 61 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 6 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(Đ, A); (Đ, B); (Đ, C); (T, A); (T, B); (T, C)}.

b) Các kết quả thuận lợi cho biến cố E là: (Đ, A); (Đ, B); (Đ, C).

Các kết quả thuận lợi cho biến cố F là: (T, B); (T, C).

2. Tính xác suất của biến cố liên quan đến phép thử khi các kết quả của phép thử dồng khả năng

Luyện tập 2 trang 62 Toán 9 Tập 2: Cho hai túi I và II, mỗi túi chứa 3 tấm thẻ được ghi các số 2; 3; 7. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và ghép thành số có hai chữ số với chữ số trên tấm thẻ rút từ túi I là chữ số hàng chục. Tính xác suất của các biến cố sau:

a) A: “Số tạo thành chia hết cho 4”;

b) B: “Số tạo thành là số nguyên tố”.

Lời giải:

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Luyện tập 2 trang 62 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Không gian mẫu là: Ω = {22; 23; 27; 32; 33; 37; 72; 73; 77}.

Tập Ω có 9 phần tử.

Vì việc rút ngẫu nhiên từ mỗi túi một tấm thẻ nên các kết quả có thể là đồng khả năng.

a) Có 2 kết quả thuận lợi cho biến cố A là: 32; 72.

Vậy PA=29.

b) Có 3 kết quả thuận lợi cho biến cố B là: 23; 37; 73.

Vậy PB=39=13.

Luyện tập 3 trang 63 Toán 9 Tập 2: Trở lại Ví dụ 3, tính xác suất để cây con có hạt vàng và nhăn.

Lời giải:

Theo ví dụ 3, ta có không gian mẫu của phép thử là:

Ω = {AA, BB); (AA, Bb); (AA, bB); (AA, bb); (Aa, BB); (Aa, Bb); (Aa, bB); (Aa, bb)}.

Tập Ω có 8 phần tử. Phép thử có 8 kết quả có thể. Do cây con chọn ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ nên các kết quả có thể trên là đổng khả năng.

Gọi M là biến cố “Cây con có hạt vàng và nhăn”.

Cây con có hạt vàng và nhăn nếu trong gene màu hạt có ít nhất một allele trội A và trong gene dạng hạt có cả hai allele lặn b.

Có 2 kết quả thuận lợi cho biến cố M là (AA, bb); (Aa, bb).

Vậy PM=28=14.

Bài tập

Bài 8.5 trang 63 Toán 9 Tập 2: Chọn ngẫu nhiên một gia đình có hai con. Giả thiết rằng biến cố “Sinh con trai” và biến cố “Sinh con gái” là đồng khả năng. Tính xác suất của các biến cố sau:

A: “Gia đình đó có cả con trai và con gái”;

B: “Gia đình đó có con trai”.

Lời giải:

Phép thử là chọn ngẫu nhiên một gia đình có hai con.

Kết quả của phép thử là (a, b), trong đó a và b tương ứng là giới tính của người con thứ nhất và người con thứ hai.

Không gian mẫu của phép thử là Ω = {(Trai, Trai); (Trai, Gái); (Gái, Trai); (Gái, Gái)}.

Tập Ω có 4 phần tử.

a) Có 2 kết quả thuận lợi cho biến cố A là: (Trai, Gái); (Gái, Trai).

Vậy PA=24=12.

b) Có 3 kết quả thuận lợi cho biến cố B là: (Trai, Trai); (Trai, Gái); (Gái, Trai).

Vậy PB=33.

Bài 8.6 trang 63 Toán 9 Tập 2: Gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II. Tính xác suất các biến cố sau:

E: “Có đúng một con xúc xắc xuất hiện mặt 6 chấm”;

F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”;

G: “Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”.

Lời giải:

⦁ Phép thử là gieo đồng thời hai con xúc xắc cân đối, đồng chất I và II.

Kết quả của phép thử là (a, b), trong đó a và b tương ứng là số chấm xuất hiện trên con xúc xắc I và con xúc xắc II.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Bài 8.6 trang 63 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 36 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); …; (5, 6); (6, 6)}.

Tập Ω có 36 phần tử.

⦁ Có 10 kết quả thuận lợi cho biến cố E là: (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5). Do đó PE=1036=518.

⦁ Có 11 kết quả thuận lợi cho biến cố F là: (1, 6); (2, 6); (3, 6); (4, 6); (5, 6); (6, 1); (6, 2); (6, 3); (6, 4); (6, 5); (6, 6). Do đó PF=1136.

⦁ Có 14 kết quả thuận lợi cho biến cố G là: (1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (2, 1); (2, 2); (2, 3); (3, 1); (3, 2); (4, 1); (5, 1); (6, 1). Do đó PG=1436=718.

Bài 8.7 trang 63 Toán 9 Tập 2: Bạn An gieo một đồng xu cân đối và bạn Bình rút ngẫu nhiên một tấm thẻ từ hộp chứa 5 tấm thẻ ghi các số 1; 2; 3; 4; 5. Tính xác suất của các biến cố sau:

E: “Rút được tấm thẻ ghi số lẻ”;

F: “Rút được tấm thẻ ghi số chẵn và đồng xu xuất hiện mặt sấp”;

G: “Rút được tấm thẻ ghi số 5 hoặc đồng xu xuất hiện mặt ngửa”.

Lời giải:

⦁ Phép thử là bạn An gieo một đồng xu cân đối và bạn Bình rút ngẫu nhiên một tấm thẻ từ hộp chứa 5 tấm thẻ ghi các số 1; 2; 3; 4; 5.

Kết quả của phép thử là (a, b), trong đó a và b tương ứng là mặt xuất hiện của đồng xu (mặt sấp (S), mặt ngửa (N)) và số ghi trên tấm thẻ.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Bài 8.7 trang 63 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 10 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(S, 1); (S, 2); (S, 3); (S, 4); (S, 5); (N, 1); (N, 2); (N, 3); (N, 4); (N, 5)}.

Tập Ω có 10 phần tử.

⦁ Có 6 kết quả thuận lợi cho biến cố E là: (S, 1); (S, 3); (S, 5); (N, 1); (N, 3); (N, 5). Do đó PE=610=35.

⦁ Có 2 kết quả thuận lợi cho biến cố F là: (S, 2); (S, 4). Do đó PF=210=15.

⦁ Có 6 kết quả thuận lợi cho biến cố G là: (S, 5); (N, 1); (N, 2); (N, 3); (N, 4); (N, 5). Do đó PG=610=35.

Bài 8.8 trang 63 Toán 9 Tập 2: Có hai túi I và II mỗi túi chứa 4 tấm thẻ được đánh số 1; 2; 3; 4. Rút ngẫu nhiên từ mỗi túi ra một tấm thẻ và nhân hai số ghi trên hai tấm thẻ với nhau. Tính xác suất của các biến cố sau:

A: “Kết quả là một số lẻ”;

B: “Kết quả là 1 hoặc một số nguyên tố”.

Lời giải:

⦁ Phép thử là rút ngẫu nhiên từ mỗi túi ra một tấm thẻ.

Kết quả của phép thử là một cặp số (a, b), trong đó a và b tương ứng là số ghi trên thẻ được rút ra ở túi I và túi II.

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:

Bài 8.8 trang 63 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Mỗi ô trong bảng là một kết quả có thể. Không gian mẫu là tập hợp 16 ô của bảng trên. Do đó, không gian mẫu của phép thử là Ω = {(1, 1); (1, 2); (1, 3); (1, 4); (2, 1); (2, 2); (2, 3); (2, 4); (3, 1); (3, 2); (3, 3); (3, 4); (4, 1); (4, 2); (4, 3); (4, 4)}.

Tập Ω có 16 phần tử.

⦁ Xét biến cố A: “Tích hai số ghi trên hai tấm thẻ là một số lẻ”.

Có 4 kết quả thuận lợi cho biến cố A là: (1, 1); (1, 3); (3, 1); (3, 3). Do đó PE=416=14.

⦁ Xét biến cố B: “Tích hai số ghi trên hai tấm thẻ là 1 hoặc một số nguyên tố”.

Có 6 kết quả thuận lợi cho biến cố B là: (1, 1); (1, 2); (1, 3); (1, 5); (2, 1); (3, 1). Do đó PF=616=38.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 25. Phép thử ngẫu nhiên và không gian mẫu

Bài 26. Xác suất của biến cố liên quan tới phép thử

Luyện tập chung trang 64

Bài tập cuối chương VIII

Bài 27. Góc nội tiếp

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 3 (Cánh diều): Hình cầu

Next post

Giải SGK Toán 9 Hoạt động 3 (Chân trời sáng tạo): Vẽ đồ thị hàm số bậc hai y = ax2 (a ≠ 0) bằng phần mềm GeoGebra

Bài liên quan:

Giải SGK Toán 9 (Kết nối tri thức): Bài tập ôn tập cuối năm

Giải SGK Toán 9 (Kết nối tri thức): Gene trội trong các thế hệ lai

Giải SGK Toán 9 (Kết nối tri thức): Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel

Giải SGK Toán 9 (Kết nối tri thức): Vẽ hình đơn giản với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 10

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 106

Bài 32. Hình cầu

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Kết nối tri thức | Giải bài tập Toán 9 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Kết nối tri thức): Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
  3. Giải SGK Toán 9 Bài 2 (Kết nối tri thức): Giải hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 19
  5. Giải SGK Toán 9 Bài 3 (Kết nối tri thức): Giải bài toán bằng cách lập hệ phương trình
  6. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 1 trang 24
  7. Giải SGK Toán 9 Bài 4 (Kết nối tri thức): Phương trình quy về phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
  9. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 36
  10. Giải SGK Toán 9 Bài 6 (Kết nối tri thức): Bất phương trình bậc nhất một ẩn
  11. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 2 trang 42
  12. Giải SGK Toán 9 Bài 7 (Kết nối tri thức): Căn bậc hai và căn thức bậc hai
  13. Giải SGK Toán 9 Bài 8 (Kết nối tri thức): Khai căn bậc hai với phép nhân và phép chia
  14. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 52
  15. Giải SGK Toán 9 Bài 9 (Kết nối tri thức): Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
  16. Giải SGK Toán 9 Bài 10 (Kết nối tri thức): Căn bậc ba và căn thức bậc ba
  17. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 63
  18. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65
  19. Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn
  20. Giải SGK Toán 9 Bài 12 (Kết nối tri thức): Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  21. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80
  22. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 4 trang 81
  23. Giải SGK Toán 9 Bài 13 (Kết nối tri thức): Mở đầu về đường tròn
  24. Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn
  25. Giải SGK Toán 9 Bài 15 (Kết nối tri thức): Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  26. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 96
  27. Giải SGK Toán 9 Bài 16 (Kết nối tri thức): Vị trí tương đối của đường thẳng và đường tròn
  28. Giải SGK Toán 9 Bài 17 (Kết nối tri thức): Vị trí tương đối của hai đường tròn
  29. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 108
  30. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 5
  31. Giải SGK Toán 9 (Kết nối tri thức): Pha chế dung dịch theo nồng độ yêu cầu
  32. Giải SGK Toán 9 (Kết nối tri thức): Tính chiều cao và xác định khoảng cách
  33. Giải SGK Toán 9 Bài 18 (Kết nối tri thức): Hàm số y = ax^2 (a ≠ 0)
  34. Giải SGK Toán 9 Bài 19 (Kết nối tri thức): Phương trình bậc hai một ẩn
  35. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18
  36. Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng
  37. Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình
  38. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 28
  39. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 6
  40. Giải SGK Toán 9 Bài 22 (Kết nối tri thức): Bảng tần số và biểu đồ tần số
  41. Giải SGK Toán 9 Bài 23 (Kết nối tri thức): Bảng tần số tương đối và biểu đồ tần số tương đối
  42. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 43
  43. Giải SGK Toán 9 Bài 24 (Kết nối tri thức): Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
  44. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 7
  45. Giải SGK Toán 9 Bài 25 (Kết nối tri thức): Phép thử ngẫu nhiên và không gian mẫu
  46. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 64
  47. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 8
  48. Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp
  49. Giải SGK Toán 9 Bài 28 (Kết nối tri thức): Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác
  50. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78
  51. Giải SGK Toán 9 Bài 29 (Kết nối tri thức): Tứ giác nội tiếp
  52. Giải SGK Toán 9 Bài 30 (Kết nối tri thức): Đa giác đều

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán