Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Kết nối

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 6

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài tập cuối chương 6

A. Trắc nghiệm

Bài 6.39 trang 30 Toán 9 Tập 2: Điểm nào sau đây thuộc đồ thị của hàm số y=12x2?

A. (1; 2).

B. (2; 1).

C. (–1; 2).

D. 1;12.

Lời giải:

Đáp án đúng là: D

Thay x = 1 vào hàm số y=12x2, ta được: y=12⋅12=12.

Do đó điểm 1;12 thuộc đồ thị của hàm số y=12x2.

Bài 6.40 trang 30 Toán 9 Tập 2:

Bài 6.40 trang 30 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Hình 6.11 là hai đường parabol trong mặt phẳng toạ độ Oxy. Khẳng định nào sau đây là đúng?

A. a < 0 < b.

B. a < b < 0.

C. a > b > 0.

D. a > 0 > b.

Lời giải:

Đáp án đúng là: D

Quan sát Hình 6.11, ta thấy:

⦁ Đồ thị hàm số y = ax2 nằm phía trên trục hoành nên a > 0.

⦁ Đồ thị hàm số y = bx2 nằm phía trên trục hoành nên b < 0.

Do đó a > 0 > b.

Bài 6.41 trang 30 Toán 9 Tập 2: Các nghiệm của phương trình x2 + 7x + 12 = 0 là

A. x1 = 3; x2 = 4.

B. x1 = –3; x2 = –4.

C. x1 = 3; x2 = –4.

D. x1 = –3; x2 = 4.

Lời giải:

Đáp án đúng là: B

Ta có ∆ = 72 – 4.1.12 = 1 > 0 và Δ=1.

Do đó, phương trình có hai nghiệm phân biệt:

x1=−7+12⋅1=−3;x2=−7−12⋅1=−4.

Bài 6.42 trang 30 Toán 9 Tập 2: Phương trình bậc hai có hai nghiệm x­1 = 13 và x2 = 25 là

A. x2 – 13x + 25 = 0.

B. x2 – 25x + 13 = 0.

C. x2 – 38x + 325 = 0.

D. x2 + 38x + 325 = 0.

Lời giải:

Đáp án đúng là: C

Ta có x1 + x­2 = 13 + 25 = 38; x1x2 = 13.25 = 325.

Vậy x1, x2 là hai nghiệm của phương trình x2 – 38x + 325 = 0.

Bài 6.43 trang 30 Toán 9 Tập 2: Gọi x1, x2 là hai nghiệm của phương trình x2 – 5x + 6 = 0. Khi đó, giá trị của biểu thức A=x12+x22 là

A. 13.

B. 19.

C. 25.

D. 5.

Lời giải:

Đáp án đúng là: A

Do x1, x2 là hai nghiệm của phương trình x2 – 5x + 6 = 0 nên theo định lí Viète, ta có: x1 + x2 = 5 và x1x2 = 6.

Ta có x1+x22=x12+2x1x2+x22

Suy ra x12+x22=x1+x22−2x1x2=52−2⋅6=13.

Bài 6.44 trang 30 Toán 9 Tập 2: Chiều dài và chiều rộng của hình chữ nhật có chu vi 20 cm và diện tích 24 cm2 là

A. 5 cm và 4 cm.

B. 6 cm và 4 cm.

C. 8 cm và 3 cm.

D. 10 cm và 2 cm.

Lời giải:

Đáp án đúng là: B

Gọi hai kích thước của hình chữ nhật là x1; x­2 (cm).

Ta có nửa chu vi và diện tích hình chữ nhật lần lượt là x1 + x­2 (cm) và x1x2 (cm2).

Theo bài, hình chữ nhật có chu vi 20 cm nên nửa chu vi hình chữ nhật là 20 : 2 = 10 (cm), do đó x1 + x­2 = 10.

Diện tích hình chữ nhật là 24 cm2, do đó x1x2 = 24.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 10x + 24 = 0.

Ta có ∆’ = (–5)2 – 1.24 = 1 > 0 và Δ‘=1=1.

Suy ra, phương trình có hai nghiệm phân biệt:

x1=5+11=6; x2=5−11=4.

Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 6 cm và 4 cm (do chiều dài luôn lớn hơn chiều rộng).

B. Tự luận

Bài 6.45 trang 30 Toán 9 Tập 2: Vẽ đồ thị của các hàm số y=52x2 và y=−52x2 trên cùng một mặt phẳng toạ độ.

Lời giải:

Lập bảng một số giá trị tương ứng giữa x và y của hai hàm số đã cho.

x

–2

–1

0

1

2

y=52x2

10

2,5

0

2,5

10

x

–2

–1

0

1

2

y=−52x2

–10

–2,5

0

–2,5

–10

Biểu diễn các điểm (–2; 10); (–1; 2,5); (0; 0); (1; 2,5); (2; 10) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị của hàm số y=52x2 (đường màu đỏ).

Biểu diễn các điểm (–2; –10); (–1; –2,5); (0; 0); (1; –2,5); (2; –10) trên cùng một mặt phẳng tọa độ Oxy với đồ thị hàm số y=52x2 và nối chúng lại ta được đồ thị của hàm số y=–52x2 (đường màu xanh).

Bài 6.45 trang 30 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Bài 6.46 trang 30 Toán 9 Tập 2: Cho hàm số y = ax2. Xác định hệ số a, biết đồ thị hàm số đi qua điểm A(3; 3). Vẽ đồ thị của hàm số trong trường hợp đó.

Lời giải:

Vì đồ thị hàm số đi qua điểm A(3; 3) nên thay x = 3, y = 3 vào hàm số ta được:

3 = a.32, hay 9a = 3, suy ra a=13.

Vậy a=13. Khi đó ta có hàm số y=13x2.

Lập bảng một số giá trị tương ứng giữa x và y của hàm số y=13x2:

x

–6

–3

0

3

6

y=13x2

12

3

0

3

12

Từ đó vẽ được đồ thị của hàm số y=13x2 như sau:Bài 6.46 trang 30 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Bài 6.47 trang 30 Toán 9 Tập 2: Giải các phương trình sau:

a) 5x2−65x+2=0;

b) 2x2+26x+3=0.

Lời giải:

a) Ta có Δ‘=−352−5⋅2=35>0.

Do đó phương trình đã cho có hai nghiệm phân biệt là:

x1=35+355; x2=35−355.

b) Ta có Δ‘=62−2⋅3=0. Do đó phương trình đã cho có nghiệm kép là:

x1=x2=−62.

Bài 6.48 trang 31 Toán 9 Tập 2: Cho phương trình x2 – 11x + 30 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính:

a) x12+x22;

b) x13+x23.

Lời giải:

Xét phương trình x2 – 11x + 30 = 0 có ∆ = (–11)2 – 4.1.30 = 1 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1 + x­2 = 11 và x1x­2 = 30.

Khi đó, ta có:

a) x12+x22=x12+2x1x2+x22−2x1x2

=x1+x22−2x1x2=112−2⋅30=61.

b) x13+x23=x1+x2x12−x1x2+x22

=x1+x2[x12+2x1x2+x22−3x1x2]

=x1+x2[x1+x22−3x1x2] = 11.[112-3.30] = 341.

Bài 6.49 trang 31 Toán 9 Tập 2: Tìm hai số u và v, biết:

a) u + v = 13 và uv = 40;

b) u – v = 4 và uv = 77.

Lời giải:

a) Hai số u và v có tổng bằng 12 và tích bằng 40 nên là hai nghiệm của phương trình x2 – 13x + 40 = 0.

Ta có ∆ = (–13)2 – 4.40 = 9 > 0 và Δ=9=3.

Do đó, phương trình có hai nghiệm x1=13+32⋅1=8;x2=13−32⋅1=5.

Vậy u = 8; v = 5 hoặc u = 5; v = 8.

b) Đặt t = –v, khi đó ta có u + t = 4 và ut = –77.

Hai số u và t có tổng bằng 4 và tích bằng –77 nên là hai nghiệm của phương trình x2 + 4x – 77 = 0.

Ta có ∆ = 42 – 4.(–77) = 324 > 0 và Δ=324=18.

Do đó, phương trình có hai nghiệm x1=−4+182⋅1=7;x2=−4−182⋅1=−11.

Suy ra u = 7; t = –11 hoặc u = –11; t = 7.

Vậy u = 7; v = 11 hoặc u = –11; v = –7.

Bài 6.50 trang 31 Toán 9 Tập 2: Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức d = 0,05v2 + 1,1v để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/giờ) (theo Algebra 2, NXB McGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Lời giải:

Ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh nên d = 300 (feet).

Thay d = 300 vào công thức d = 0,05v2 + 1,1v, ta được:

300 = 0,05v2 + 1,1v

0,05v2 + 1,1v – 300 = 0.

Ta có ∆ = 1,12 – 4.0,05.(–300) = 61,21 > 0.

Do đó, phương trình có hai nghiệm phân biệt:

v1=−1,1+61,212⋅0,05≈67,24 (dặm/giờ) < 70 (dặm/giờ) (thỏa mãn);

v2=−1,1−61,212⋅0,05≈−89,24 (không thỏa mãn).

Vậy nếu ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Bài 6.51 trang 31 Toán 9 Tập 2: Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Lời giải:

Gọi x là lãi suất năm của hình thức gửi tiết kiệm này (x viết dưới dạng số thập phân, x > 0).

Sau một năm, bác Hương nhận được số tiền cả vốn lẫn lãi là:

100 + 100x (triệu đồng).

Bác Hương gửi thêm 50 triệu đồng nên năm thứ hai bác gửi số tiền là:

100 + 100x + 50 = 150 + 100x (triệu đồng).

Đến cuối năm thứ hai bác Hương nhận được số tiền lãi là:

(150 + 100x).x (triệu đồng).

Sau hai năm (kể từ khi gửi lần đầu), số tiền bác Hương nhận được cả vốn lẫn lãi là:

150 + 100x + (150 + 100x).x = 150 + 250x + 100x2 (triệu đồng).

Theo bài, sau hai năm bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:

150 + 250x + 100x2 = 176

100x2 + 250x – 26 = 0

50x2 + 125x – 13 = 0.

Ta có ∆ = 1252 – 4.50.(–13) = 18 225 > 0 và Δ=18225=135.

Suy ra, phương trình trên có hai nghiệm phân biệt:

x1=−125+1352⋅50=0,1 (thỏa mãn); x2=−125−1352⋅50=−2,6 (loại).

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 0,1 = 10%.

Bài 6.52 trang 31 Toán 9 Tập 2: Hai khối học sinh lớp 8 và lớp 9 của một trường trung học cơ sở tham gia lao động. Nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút. Nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ. Hỏi nếu mỗi khối lớp làm riêng thì sau bao lâu sẽ hoàn thành công việc?

Lời giải:

Đổi 1 giờ 12 phút = 1,2 giờ.

Gọi thời gian học sinh khối lớp 9 làm riêng xong công việc là x (giờ) (x > 0).

Thời gian học sinh khối lớp 8 làm riêng xong công việc là x + 1 (giờ).

Một giờ khối lớp 9 làm được 1x (công việc).

Một giờ khối lớp 8 làm được 1x+1 (công việc).

Một giờ cả hai khối làm được 11,2=56 (công việc).

Khi đó, ta có phương trình:

1x+1x+1=56

Quy đồng mẫu hai vế của phương trình, ta được:

x+1xx+1+xxx+1=5xx+16xx+1.

Nhân cả hai vế của phương trình với 6x(x + 1) để khử mẫu, ta được phương trình:

6(x + 1) + 6x = 5x(x + 1)

6x + 6 + 6x = 5x2 + 5x

5x2 – 7x – 6 = 0.

Ta có ∆ = (–7)2 – 4.5.(–6) = 169 và Δ=169=13.

Suy ra, phương trình trên có hai nghiệm phân biệt:

x1=7+132⋅5=2 (thỏa mãn); x2=7−132⋅5=−35 (loại).

Vậy thời gian học sinh khối lớp 9 làm riêng xong công việc là 2 giờ, thời gian học sinh khối lớp 8 làm riêng xong công việc là 2 + 1 = 3 giờ.

  •  

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 28

Bài tập cuối chương VI

Bài 22. Bảng tần số và biểu đồ tần số

Bài 23. Bảng tần số tương đối và biểu đồ tần số tương đối

Luyện tập chung trang 43

Bài 24. Bảng tần số, tần số tương đối ghép nhóm và biểu đồ

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 2 (Cánh diều): Tứ giác nội tiếp đường tròn

Next post

Giải SGK Toán 9 Bài 1 (Chân trời sáng tạo): Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài liên quan:

Giải SGK Toán 9 (Kết nối tri thức): Bài tập ôn tập cuối năm

Giải SGK Toán 9 (Kết nối tri thức): Gene trội trong các thế hệ lai

Giải SGK Toán 9 (Kết nối tri thức): Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel

Giải SGK Toán 9 (Kết nối tri thức): Vẽ hình đơn giản với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 10

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 106

Bài 32. Hình cầu

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Kết nối tri thức | Giải bài tập Toán 9 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Kết nối tri thức): Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
  3. Giải SGK Toán 9 Bài 2 (Kết nối tri thức): Giải hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 19
  5. Giải SGK Toán 9 Bài 3 (Kết nối tri thức): Giải bài toán bằng cách lập hệ phương trình
  6. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 1 trang 24
  7. Giải SGK Toán 9 Bài 4 (Kết nối tri thức): Phương trình quy về phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
  9. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 36
  10. Giải SGK Toán 9 Bài 6 (Kết nối tri thức): Bất phương trình bậc nhất một ẩn
  11. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 2 trang 42
  12. Giải SGK Toán 9 Bài 7 (Kết nối tri thức): Căn bậc hai và căn thức bậc hai
  13. Giải SGK Toán 9 Bài 8 (Kết nối tri thức): Khai căn bậc hai với phép nhân và phép chia
  14. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 52
  15. Giải SGK Toán 9 Bài 9 (Kết nối tri thức): Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
  16. Giải SGK Toán 9 Bài 10 (Kết nối tri thức): Căn bậc ba và căn thức bậc ba
  17. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 63
  18. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65
  19. Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn
  20. Giải SGK Toán 9 Bài 12 (Kết nối tri thức): Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  21. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80
  22. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 4 trang 81
  23. Giải SGK Toán 9 Bài 13 (Kết nối tri thức): Mở đầu về đường tròn
  24. Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn
  25. Giải SGK Toán 9 Bài 15 (Kết nối tri thức): Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  26. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 96
  27. Giải SGK Toán 9 Bài 16 (Kết nối tri thức): Vị trí tương đối của đường thẳng và đường tròn
  28. Giải SGK Toán 9 Bài 17 (Kết nối tri thức): Vị trí tương đối của hai đường tròn
  29. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 108
  30. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 5
  31. Giải SGK Toán 9 (Kết nối tri thức): Pha chế dung dịch theo nồng độ yêu cầu
  32. Giải SGK Toán 9 (Kết nối tri thức): Tính chiều cao và xác định khoảng cách
  33. Giải SGK Toán 9 Bài 18 (Kết nối tri thức): Hàm số y = ax^2 (a ≠ 0)
  34. Giải SGK Toán 9 Bài 19 (Kết nối tri thức): Phương trình bậc hai một ẩn
  35. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18
  36. Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng
  37. Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình
  38. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 28
  39. Giải SGK Toán 9 Bài 22 (Kết nối tri thức): Bảng tần số và biểu đồ tần số
  40. Giải SGK Toán 9 Bài 23 (Kết nối tri thức): Bảng tần số tương đối và biểu đồ tần số tương đối
  41. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 43
  42. Giải SGK Toán 9 Bài 24 (Kết nối tri thức): Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
  43. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 7
  44. Giải SGK Toán 9 Bài 25 (Kết nối tri thức): Phép thử ngẫu nhiên và không gian mẫu
  45. Giải SGK Toán 9 Bài 26 (Kết nối tri thức): Xác suất của biến cố liên quan tới phép thử
  46. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 64
  47. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 8
  48. Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp
  49. Giải SGK Toán 9 Bài 28 (Kết nối tri thức): Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác
  50. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78
  51. Giải SGK Toán 9 Bài 29 (Kết nối tri thức): Tứ giác nội tiếp
  52. Giải SGK Toán 9 Bài 30 (Kết nối tri thức): Đa giác đều

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán