Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Kết nối

Giải SGK Toán 9 Bài 28 (Kết nối tri thức): Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Mở đầu trang 72 Toán 9 Tập 2: Cho trước một tam giác ABC. Bằng thước kẻ và compa, em có thể vẽ được một đường tròn đi qua ba đỉnh của tam giác và đường tròn tiếp xúc với cả ba cạnh của tam giác hay không?

Lời giải:

Ta có thể vẽ được một đường tròn đi qua ba đỉnh của tam giác và đường tròn tiếp xúc với cả ba cạnh của tam giác.

– Tâm đường tròn đi qua ba đỉnh của tam giác ABC là giao điểm của ba đường trung trực trong tam giác ABC.

Cách vẽ đường tròn đi qua ba đỉnh của tam giác ABC bằng thước kẻ và compa:

⦁ Vẽ đường trung trực của đoạn thẳng AB: Dùng compa vẽ hai cung tròn tâm A, B có cùng bán kính, hai cung này cắt nhau tại một điểm M. Qua điểm M, dùng thước kẻ vẽ đường thẳng vuông góc với AB, ta được đường trung trực d của AB.

⦁ Tương tự, vẽ đường trung trực d’ của đoạn thẳng BC, cắt đường thẳng d tại O.

⦁ Vẽ đường tròn (O; OA). Khi đó đường tròn (O; OA) là đường tròn đi qua ba đỉnh của tam giác ABC cần vẽ.

Mở đầu trang 72 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

– Tâm đường tròn tiếp xúc với cả ba cạnh của tam giác ABC là giao điểm ba đường phân giác trong tam giác ABC.

Cách vẽ đường tròn tiếp xúc với cả ba cạnh của tam giác ABC bằng thước kẻ và compa:

⦁ Vẽ tia phân giác góc B như sau: Dùng compa vẽ một cung tròn tâm B cắt hai cạnh BC, BA lần lượt tại X và Y. Vẽ hai cung tròn tâm X, Y có cùng bán kính, hai cung này cắt nhau tại một điểm Z khác B. Kẻ tia BZ ta được tia phân giác góc B.

⦁ Tương tự, vẽ tia phân giác góc C, cắt tia BZ tại I.

⦁ Vẽ đường cao ID từ I xuống BC (D thuộc BC). Vẽ đường tròn (I; ID).

Mở đầu trang 72 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Khi đó đường tròn (I; ID) là đường tròn tiếp xúc với cả ba cạnh của tam giác ABC cần vẽ.

1. Đường tròn ngoại tiếp một tam giác

HĐ1 trang 72 Toán 9 Tập 2: Cho d là đường trung trực của đoạn thẳng AB và O là một điểm trên d (H.9.12). Hỏi đường tròn tâm O đi qua A thì có đi qua B không?

HĐ1 trang 72 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Vì O nằm trên đường trung trực d của đoạn thẳng AB nên OA = OB.

Do đó đường tròn tâm O đi qua A cũng đi qua B.

HĐ2 trang 72 Toán 9 Tập 2: Cho tam giác ABC có ba đường trung trực đồng quy tại O (H.9.13). Hãy giải thích tại sao đường tròn (O; OA) đi qua ba đỉnh của tam giác ABC.

HĐ2 trang 72 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Vì O nằm trên đường trung trực của đoạn thẳng AB nên OA = OB.

Tương tự, O nằm trên đường trung trực của đoạn thẳng BC, CA nên ta cũng có OB = OC và OC = OA.

Do đó OA = OB = OC.

Suy ra đường tròn (O; OA) đi qua ba điểm A, B, C.

Vậy đường tròn (O; OA) đi qua ba đỉnh của tam giác ABC.

Câu hỏi trang 73 Toán 9 Tập 2: Hãy kể tên bốn tam giác nội tiếp đường tròn (O) trong Hình 9.14.

Câu hỏi trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Các điểm B, C, M, N cùng nằm trên đường tròn (O) nên ta có bốn tam giác nội tiếp đường tròn (O) là ∆BCM, BCN, MNB, MNC.

HĐ3 trang 73 Toán 9 Tập 2: Cho tam giác ABC vuông tại đỉnh A (H.9.15). Gọi N, P lần lượt là trung điểm của các cạnh AB và AC.

HĐ3 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Vẽ hai đường trung trực a, b của các cạnh AB, AC, cắt nhau tại M.

b) Hãy giải thích vì sao MN, MP là các đường trung bình của tam giác ABC.

c) Hãy giải thích vì sao M là trung điểm của BC, từ đó suy ra đường tròn ngoại tiếp của tam giác ABC có tâm M và bán kính MB=MC=BC2.

Lời giải:

a) Vẽ đường thẳng a vuông góc với AB tại N và vẽ đường thẳng b vuông góc với AC tại P, ta được hai đường trung trực a, b của các cạnh AB, AC. Hai đường thẳng a và b cắt nhau tại M.

b) Vì ∆ABC vuông tại A nên AB ⊥ AC. (1)

Vì a là đường trung trực của AB nên a ⊥ AB hay MN ⊥ AB. (2)

Vì b là đường trung trực của AC nên b ⊥ AC hay MP ⊥ AC. (3)

Từ (1) và (2) suy ra MN // AC.

Từ (1) và (3) suy ra MP // AB.

Xét ∆ABC có:

⦁ N là trung điểm của AB và MN // AC nên MN là đường trung bình của tam giác.

⦁ P là trung điểm của AC và MP // AB nên MP là đường trung bình của tam giác.

c) Vì MN là đường trung bình của tam giác ABC nên M là trung điểm của BC.

Suy ra MB=MC=BC2.

Lại có M thuộc đường trung trực của AB nên MA = MB.

Do đó MA=MB=MC=BC2.

Vậy đường tròn ngoại tiếp của tam giác ABC có tâm M là bán kính MB=MC=BC2.

Luyện tập 1 trang 73 Toán 9 Tập 2: Cho tam giác ABC có AC = 3 cm, AB = 4 cm và BC = 5 cm. Tính bán kính của đường tròn ngoại tiếp tam giác ABC.

Lời giải:

Luyện tập 1 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Xét ∆ABC có:

⦁ AB2 + AC2 = 42 + 32 = 25;

⦁ BC2 = 52 = 25.

Do đó AB2 + AC2 = BC2.

Suy ra tam giác ABC vuông tại A (định lí Pythagore đảo).

Theo kết quả của Hoạt động 3, trang 73, SGK Toán 9, Tập 2, ta có tâm đường tròn ngoại tiếp ∆ABC là trung điểm M của BC và bán kính của đường tròn ngoại tiếp ∆ABC là MA=MB=MC=BC2=52=2,5(cm).

HĐ4 trang 73 Toán 9 Tập 2:

a) Vẽ tam giác đều ABC. Hãy trình bày cách xác định tâm của đường tròn ngoại tiếp tam giác ABC và vẽ đường tròn đó.

b) Giải thích vì sao tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó (H.9.17).

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

c) Giải thích vì sao OBM^=30° và OB=33BC (với M là trung điểm của BC).

Lời giải:

a) Vẽ ba đường trung trực của các cạnh AB, BC, CA của tam giác ABC. Ba đường trung trực này cắt nhau tại một điểm O, khi đó O là tâm đường tròn ngoại tiếp tam giác ABC (hình vẽ)

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

b) Vì tam giác ABC đều nên ba đường trung trực cũng đồng thời là ba đường trung tuyến, do đó giao điểm O của ba đường trên là trọng tâm của tam giác.

Vậy tâm O của đường tròn ngoại tiếp tam giác ABC trùng với trọng tâm của tam giác đó.

c)

HĐ4 trang 73 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác ABC đều nên đường trung trực BO của AC cũng đồng thời là đường phân giác của góc ABC. Do đó OBM^=12ABC^=12⋅60°=30°.

Xét ∆OBM vuông tại M có cosOBM^=BMBO.

Suy ra BO=BMcosOBM^=12BCcos30° (do M là trung điểm của BC nên BM=12BC).

Do đó BO=12BC32=BC3=33BC.

Luyện tập 2 trang 74 Toán 9 Tập 2: Cho tam giác đều ABC nội tiếp đường tròn (O) có bán kính bằng 4 cm. Tính độ dài các cạnh của tam giác.

Lời giải:

Luyện tập 2 trang 74 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Giả sử tam giác ABC đều có cạnh bằng a.

Vì tam giác đều ABC nội tiếp đường tròn (O) nên O là trọng tâm của tam giác và bán kính đường tròn ngoại tiếp (O) là AO=33a.

Theo bài, AO = 4 cm nên ta có 33a=4

Suy ra a=4⋅33=43(cm).

Vậy các cạnh của tam giác ABC có độ dài bằng 43 cm.

2. Đường tròn nội tiếp một tam giác

HĐ5 trang 74 Toán 9 Tập 2: Cho tam giác ABC có ba đường phân giác đồng quy tại điểm I. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ I xuống các cạnh BC, CA và AB (H.9.19).

HĐ5 trang 74 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Hãy giải thích vì sao các điểm D, E, F cùng nằm trên một đường tròn có tâm I.

b) Gọi (I) là đường tròn trên. Hãy giải thích vì sao (I) tiếp xúc với các cạnh của tam giác ABC.

Lời giải:

a) Vì I là giao điểm của ba đường phân giác của tam giác ABC nên I cách đều ba cạnh của tam giác đó.

Mặt khác, ID ⊥ BC, IE ⊥ CA, IF ⊥ AB nên ID = IE = IF.

Do đó các điểm D, E, F cùng nằm trên một đường tròn có tâm I.

b) Gọi (I; R) là đường tròn đi qua ba điểm D, E, F. Do đó ID = IE = IF = R.

Vì ID ⊥ BC, ID = R nên BC là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh BC.

Vì IE ⊥ AC, IE = R nên AC là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh AC.

Vì IF ⊥ AB, IF = R nên AB là tiếp tuyến của (I; R) hay (I) tiếp xúc với cạnh AB.

Vậy (I) tiếp xúc với các cạnh của tam giác ABC.

Câu hỏi trang 75 Toán 9 Tập 2: Mỗi tam giác có bao nhiêu đường tròn nội tiếp? Có bao nhiêu tam giác cùng ngoại tiếp một đường tròn?

Lời giải:

⦁ Mỗi tam giác chỉ có một đường tròn nội tiếp, vì đối với mỗi góc của tam giác, ta chỉ xác định được duy nhất một đường phân giác, do đó giao điểm của ba đường phân giác này là duy nhất.

⦁ Có vô số tam giác ngoại tiếp một đường tròn, vì trên đường tròn có vô số điểm, mỗi điểm này đều có thể là một tiếp điểm của đường tròn đó với cạnh của tam giác.

Chẳng hạn như hình vẽ dưới đây:

Câu hỏi trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

HĐ6 trang 75 Toán 9 Tập 2: Cho tam giác đều ABC có trọng tâm G.

a) Giải thích vì sao G cũng là tâm đường tròn nội tiếp tam giác ABC.

b) Từ đó, giải thích vì sao bán kính đường tròn nội tiếp tam giác ABC bằng một nửa bán kính đường tròn ngoại tiếp tam giác ABC và bằng 36BC.

Lời giải:

HĐ6 trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Vì ∆ABC là tam giác đều nên ba đường trung tuyến đồng thời là ba đường phân giác, hay trọng tâm G của tam giác cũng là giao điểm của ba đường phân giác của tam giác đó.

Do đó trọng tâm G là tâm đường tròn nội tiếp của tam giác ABC.

b) Vì ∆ABC là tam giác đều nên ba đường trung tuyến đồng thời là ba đường trung trực, hay trọng tâm G của tam giác cũng là giao điểm của ba đường trung trực của tam giác đó.

Do đó trọng tâm G là tâm đường tròn ngoại tiếp của tam giác ABC.

Gọi M là trung điểm của BC. Khi đó ta có GM, GB lần lượt là bán kính đường tròn nội tiếp và bán kính đường tròn ngoại tiếp của tam giác ABC.

Vì ∆ABC là tam giác đều có BG là đường phân giác của góc ABC nên GBM^=12ABC^=12⋅60°=30°.

Vì M là trung điểm của BC nên BM=12BC.

Xét ∆GBM vuông tại M, ta có

⦁ GM=GB⋅sinGBM^=GB⋅sin30°=12GB.

⦁ GM=BM⋅tanGBM^=12BC⋅tan30°=12BC⋅33=36BC.

Vậy bán kính đường tròn nội tiếp tam giác ABC bằng một nửa bán kính đường tròn ngoại tiếp tam giác ABC và bằng 36BC

Thực hành trang 75 Toán 9 Tập 2: Vẽ đường tròn nội tiếp của tam giác ABC bằng thước kẻ và compa theo các bước sau:

– Vẽ tia phân giác góc B như sau: Dùng compa vẽ một cung tròn tâm B cắt hai cạnh BC, BA lần lượt tại X và Y. Vẽ hai cung tròn tâm X, Y có cùng bán kính, hai cung này cắt nhau tại một điểm Z khác B. Kẻ tia BZ ta được tia phân giác góc B.

– Tương tự, vẽ tia phân giác góc C, cắt tia BZ tại I.

– Vẽ đường cao ID từ I xuống BC (D thuộc BC). Vẽ đường tròn (I; ID) (H.9.21).

Thực hành trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Khi đó đường tròn (I; ID) là đường tròn nội tiếp tam giác ABC cần vẽ.

Lời giải:

HS làm theo hướng dẫn của GV và SGK.

Thực hành trang 75 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Luyện tập 3 trang 76 Toán 9 Tập 2: Cho tam giác đều ABC (H.9.22).

Luyện tập 3 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Vẽ đường tròn (I; r) nội tiếp tam giác ABC.

b) Biết rằng BC = 4 cm, hãy tính bán kính r.

Lời giải:

a) Vẽ hai đường phân giác của góc B và C cắt nhau tại I.

Kéo dài AI cắt BC tại D. Khi đó ta vẽ đường tròn (I; ID) thì được đường tròn (I; r) nội tiếp tam giác ABC với ID = r.

Luyện tập 3 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

b) Vì đường tròn (I; r) nội tiếp tam giác đều ABC có cạnh BC = 4 cm nên có đường tròn này bán kính r=36BC=36⋅4=233(cm).

Vậy r=233cm.

Bài tập

Bài 9.7 trang 76 Toán 9 Tập 2: Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng 22 cm.

Lời giải:

Bài 9.7 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì ∆ABC cân tại A nên AB = AC = 22 cm.

Áp dụng định lí Pythagore vào ∆ABC vuông tại A, ta có:

BC2 = AB2 + AC2

Do đó BC2=222+222=16

Suy ra BC = 4 cm.

Vì O là tâm đường tròn ngoại tiếp tam giác ABC vuông tại A nên bán kính của (O) bẳng một nửa cạnh huyền BC.

Vậy bán kính của (O) là: R=BC2=42=2(cm).

Bài 9.8 trang 76 Toán 9 Tập 2: Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3 cm. Tính diện tích tam giác ABC.

Lời giải:

Bài 9.8 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác ABC đều nên tâm O của đường tròn ngoại tiếp tam giác là trọng tâm của tam giác đó và bán kính đường tròn ngoại tiếp tam giác là AO=33BC.

Theo bài, AO = 3 cm nên 33BC=3

Suy ra BC = 33 cm.

Gọi H là giao điểm của AO và BC. Khi đó AH vừa là đường trung trực, vừa là đường trung tuyến, cũng là đường cao của tam giác.

Ta có AO=23AH, suy ra AH=32AO=32⋅3=4,5(cm).

Diện tích của tam giác ABC là:

S=12AH⋅BC=12⋅4,5⋅33=2734(cm2).

Vậy diện tích của tam giác ABC là 2734cm2.

Bài 9.9 trang 76 Toán 9 Tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng BAH^=OAC^.

Lời giải:

Bài 9.9 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Ta có OA = OB (cùng bằng bán kính đường tròn ngoại tiếp (O) của ∆ABC) nên ∆OAC cân tại O, do đó OAC^=OCA^ (tính chất tam giác cân).

Lại có OAC^+OCA^+AOC^=180° (tổng ba góc của một tam giác)

Suy ra 2OAC^+AOC^=180°

Nên OAC^=180°−AOC^2=90°−AOC^2.1

Gọi K là giao điểm của AH và BC. Khi đó AK là đường cao của tam giac ABC.

Xét ∆ABK vuông tại K có: ABK^+BAK^=90° (tổng hai góc nhọn của tam giác vuông)

Suy ra BAK^=90°−ABK^ hay BAH^=90°−ABC^.2

Mặt khác, xét đường tròn (O) có ABC^,AOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AC nên ABC^=12AOC^.3

Từ (2) và (3) ta có BAH^=90°−AOC^2.4

Từ (1) và (4) ta có BAH^=OAC^.

Bài 9.10 trang 76 Toán 9 Tập 2: Cho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng EIF^+BAC^=180°.

Lời giải:

Bài 9.10 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F nên IE ⊥ AB và IF ⊥ AC.

Do đó AEI^=AFI^=90°.

Xét tứ giác AEIF có: BAC^+AEI^+AFI^+EIF^=360° (tổng các góc của một tứ giác)

Suy ra BAC^+EIF^=360°−AEI^−AFI^=360°−90°−90°=180°.

Vậy EIF^+BAC^=180°.

Bài 9.11 trang 76 Toán 9 Tập 2: Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1 cm.

Lời giải:

Bài 9.11 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Gọi độ dài các cạnh của tam giác đều ABC là a (cm).

Vì tam giác ABC đều ngoại tiếp đường tròn (I; r) nên ta có r=36⋅a

Theo bài, r = 1 cm nên 1=36⋅a

Suy ra a=23(cm).

Vậy độ dài các cạnh của tam giác ABC là 23cm.

Bài 9.12 trang 76 Toán 9 Tập 2: Người ta muốn làm một khung gỗ hình tam giác đều để đặt vừa khít một chiếc đồng hồ hình tròn có đường kính 30 cm (H.9.23). Hỏi độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu?

Bài 9.12 trang 76 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Gọi độ dài các cạnh phía bên trong của khung gỗ là a (cm).

Bán kính của chiếc đồng hồ hình tròn là: r = 30 : 2 = 15 (cm).

Vì khung gỗ hình tam giác đều để đặt vừa khít chiếc đồng hồ nên đường tròn khung viền của đồng hồ nội tiếp tam giác chứa cạnh của khung gỗ và bán kính đường tròn này là r=36⋅a.

Suy ra 15=36a, suy ra a=303(cm).

Vậy độ dài cạnh của tam giác (phía bên trong) của khung gỗ là 303 cm.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 27. Góc nội tiếp

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Luyện tập chung trang 78

Bài 29. Tứ giác nội tiếp

Bài 30. Đa giác đều

Luyện tập chung trang 90

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp

Next post

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78

Bài liên quan:

Giải SGK Toán 9 (Kết nối tri thức): Bài tập ôn tập cuối năm

Giải SGK Toán 9 (Kết nối tri thức): Gene trội trong các thế hệ lai

Giải SGK Toán 9 (Kết nối tri thức): Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel

Giải SGK Toán 9 (Kết nối tri thức): Vẽ hình đơn giản với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 10

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 106

Bài 32. Hình cầu

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Kết nối tri thức | Giải bài tập Toán 9 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Kết nối tri thức): Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
  3. Giải SGK Toán 9 Bài 2 (Kết nối tri thức): Giải hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 19
  5. Giải SGK Toán 9 Bài 3 (Kết nối tri thức): Giải bài toán bằng cách lập hệ phương trình
  6. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 1 trang 24
  7. Giải SGK Toán 9 Bài 4 (Kết nối tri thức): Phương trình quy về phương trình bậc nhất một ẩn
  8. Giải SGK Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
  9. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 36
  10. Giải SGK Toán 9 Bài 6 (Kết nối tri thức): Bất phương trình bậc nhất một ẩn
  11. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 2 trang 42
  12. Giải SGK Toán 9 Bài 7 (Kết nối tri thức): Căn bậc hai và căn thức bậc hai
  13. Giải SGK Toán 9 Bài 8 (Kết nối tri thức): Khai căn bậc hai với phép nhân và phép chia
  14. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 52
  15. Giải SGK Toán 9 Bài 9 (Kết nối tri thức): Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
  16. Giải SGK Toán 9 Bài 10 (Kết nối tri thức): Căn bậc ba và căn thức bậc ba
  17. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 63
  18. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65
  19. Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn
  20. Giải SGK Toán 9 Bài 12 (Kết nối tri thức): Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  21. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80
  22. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 4 trang 81
  23. Giải SGK Toán 9 Bài 13 (Kết nối tri thức): Mở đầu về đường tròn
  24. Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn
  25. Giải SGK Toán 9 Bài 15 (Kết nối tri thức): Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  26. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 96
  27. Giải SGK Toán 9 Bài 16 (Kết nối tri thức): Vị trí tương đối của đường thẳng và đường tròn
  28. Giải SGK Toán 9 Bài 17 (Kết nối tri thức): Vị trí tương đối của hai đường tròn
  29. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 108
  30. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 5
  31. Giải SGK Toán 9 (Kết nối tri thức): Pha chế dung dịch theo nồng độ yêu cầu
  32. Giải SGK Toán 9 (Kết nối tri thức): Tính chiều cao và xác định khoảng cách
  33. Giải SGK Toán 9 Bài 18 (Kết nối tri thức): Hàm số y = ax^2 (a ≠ 0)
  34. Giải SGK Toán 9 Bài 19 (Kết nối tri thức): Phương trình bậc hai một ẩn
  35. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18
  36. Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng
  37. Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình
  38. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 28
  39. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 6
  40. Giải SGK Toán 9 Bài 22 (Kết nối tri thức): Bảng tần số và biểu đồ tần số
  41. Giải SGK Toán 9 Bài 23 (Kết nối tri thức): Bảng tần số tương đối và biểu đồ tần số tương đối
  42. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 43
  43. Giải SGK Toán 9 Bài 24 (Kết nối tri thức): Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
  44. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 7
  45. Giải SGK Toán 9 Bài 25 (Kết nối tri thức): Phép thử ngẫu nhiên và không gian mẫu
  46. Giải SGK Toán 9 Bài 26 (Kết nối tri thức): Xác suất của biến cố liên quan tới phép thử
  47. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 64
  48. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 8
  49. Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp
  50. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78
  51. Giải SGK Toán 9 Bài 29 (Kết nối tri thức): Tứ giác nội tiếp
  52. Giải SGK Toán 9 Bài 30 (Kết nối tri thức): Đa giác đều

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán