Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 9 – Kết nối

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 1 trang 24

By admin 25/07/2024 0

Giải bài tập Toán 9 Bài tập cuối chương 1 trang 24

Bài 1.19 trang 24 Toán 9 Tập 1: Cặp số nào sau đây là nghiệm của hệ phương trình {5x+7y=−13x+2y=−5?

A. (−1;1).

B. (−3;2).

C. (2;−3).

D. (5;5).

Lời giải:

Giải hệ {5x+7y=−13x+2y=−5 hay {x=−3y=2

Vậy nghiệm của hệ phương trình là (−3;2). Vậy đáp án đúng là đáp án B.

Bài 1.20 trang 24 Toán 9 Tập 1: Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;2),B(5;6),C(2;3),D(−1;−1). Đường thẳng 4x−3y=−1 đi qua hai điểm nào trong các điểm đã cho?

A. A và B;

B. B và C;

C. C và D;

D. D và A.

Lời giải:

Thay tọa độ của điểm A(1;2) vào đường thẳng ta có: 4.1−3.2=−1 (vô lí)

Thay tọa độ của điểm B(5;6) vào đường thẳng ta có: 4.5−3.6=−1 (vô lí)

Thay tọa độ của điểm C(2;3) vào đường thẳng ta có: (luôn đúng)

Thay 4.2−3.3=−1y tọa độ của điểm D(−1;−1) vào đường thẳng ta có: 4.(−1)−3.(−1)=−1 (luôn đúng)

Vậy điểm C(2;3) và D(−1;−1) thuộc đường thẳng 4x−3y=−1. Vậy đáp án đúng là đáp án C.

Bài 1.21 trang 24 Toán 9 Tập 1: Hệ phương trình {1,5x−0,6y=0,3−2x+y=−2

A. Có nghiệm là (0;−0,5).

B. Có nghiệm là (1;0).

C. Có nghiệm là (−3;−8).

D. Vô nghiệm.

Lời giải:

Giải {1,5x−0,6y=0,3−2x+y=−2 hay {x=−3y=−8

Vậy nghiệm của hệ phương trình là (−3;−8). Vậy đáp án đúng là đáp án C.

Bài 1.22 trang 24 Toán 9 Tập 1: Hệ phương trình {0,6x+0,3y=1,82x+y=−6

A. Có 1 nghiệm.

B. Vô nghiệm.

C. Có vô số nghiệm.

D. Có hai nghiệm.

Lời giải:

Giải hệ phương trình {0,6x+0,3y=1,82x+y=−6 qua MTCT, màn hình hiện kết quả “No solution” từ đó kết luận vô nghiệm. Vậy đáp án đúng là đáp B.

Bài 1.23 trang 24 Toán 9 Tập 1: Giải các hệ phương trình:
a) {2x+5y=1025x+y=1;
b) {0,2x+0,1y=0,33x+y=5;
c) {32x−y=126x−4y=2.

Lời giải:

a) {2x+5y=1025x+y=1;

Nhân cả hai vế của phương trình thứ 2 ta được 2x+5y=5 từ đó ta có hệ phương trình {2x+5y=102x+5y=5

Trừ từng vế của hai phương trình ta được (2x+5y)−(2x+5y)=10−5 hay 0x+0y=5 (vô lí). Phương trình này không có giá trị nào của x và y thỏa mãn nên hệ phương trình đã cho vô nghiệm.

b) {0,2x+0,1y=0,33x+y=5;

Nhân cả hai vế của phương trình thứ nhất với 10 ta được 2x+y=3 từ đó ta có hệ phương trình {2x+y=33x+y=5

Trừ từng vế của hai phương trình ta có (2x+y)−(3x+y)=3−5 hay −x=−2 nên x=2.

Thay x=2 vào phương trình thứ nhất ta được 2.2+y=3 hay y=−1.

Vậy hệ phương trình đã cho có nghiệm (2;−1).

c) {32x−y=126x−4y=2.

Nhân cả hai vế của phương trình thứ nhất với 4 ta được 6x−4y=2 từ đó ta có hệ phương trình {6x−4y=26x−4y=2

Trừ từng vế của hai phương trình ta được (6x−4y)−(6x−4y)=2−2 hay 0x+0y=0. Phương trình này có vô số nghiệm x,y∈R tùy ý thỏa mãn.

Với 32x−y=12 nên y=32x−12 với x∈R tùy ý. Vậy nghiệm của hệ phương trình là (x;32x−12) với x∈R tùy ý.

Bài 1.24 trang 24 Toán 9 Tập 1: Giải các hệ phương trình:

a) {0,5x+2y=−2,50,7x−3y=8,1;

b) {5x−3y=−214x+8y=19;

c) {2(x−2)+3(1+y)=−23(x−2)−2(1+y)=−3.

Lời giải:

a) {0,5x+2y=−2,50,7x−3y=8,1;

Nhân cả hai vế của phương trình thứ nhất với 3, phương trình thứ 2 với 2 ta được hệ phương trình {1,5x+6y=−7,51,4x−6y=16,2

Cộng từng vế của hai phương trình ta được (1,5x+6y)+(1,4x−6y)=−7,5+16,2 hay 2,9x=8,7 nên x=3. Với x=3 thay vào phương trình đầu ta có 0,5.3+2y=−2,5 nên y=−2.

Vậy nghiệm của hệ phương trình là (3;−2).

b) {5x−3y=−214x+8y=19;

Nhân cả hai vế của phương trình thứ nhất với 8, phương trình thứ hai với 3 ta được hệ phương trình {40x−24y=−1642x+24y=57

Cộng hai vế của phương trình ta có (40x−24y)+(42x+24y)=−16+57 hay 82x=41 nên x=12. Với x=12 thay vào phương trình đầu ta được 5.12−3y=−2 hay y=32.

Vậy nghiệm của hệ phương trình là (12;32).

c) {2(x−2)+3(1+y)=−23(x−2)−2(1+y)=−3.

Ta có {2(x−2)+3(1+y)=−23(x−2)−2(1+y)=−3 suy ra {2x−4+3+3y=−23x−6−2−2y=−3 nên ta có hệ phương trình {2x+3y=−13x−2y=5

Nhân cả hai vế của phương trình thứ nhất với 2, hai vế của phương trình thứ hai với 3, ta có hệ phương trình {4x+6y=−29x−6y=15

Cộng từng vế của hai phương trình ta có (4x+6y)+(9x−6y)=−2+15 hay 13x=13 nên x=1. Với x=1 thay vào phương trình đầu ta được 2.1+3y=−1 nên y=−1.

Vậy nghiệm của hệ phương trình là (1;−1).

Bài 1.25 trang 25 Toán 9 Tập 1: Tìm số tự nhiên N có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số N thì được một số lớn hơn số 2N là 585 đơn vị, và nếu viết hai chữ số của số N theo thứ tự ngược lại thì được một số nhỏ hơn số N là 18 đơn vị.

Lời giải:

Số N cần tìm có dạng ab¯(0<a≤9;0≤b≤9;a,b∈N).

Viết thêm chữ số 3 vào giữa hai chữ số của số N thì ta được số mới có dạng a3b¯

Thì được một số lớn hơn số 2N là 585 đơn vị nên ta có phương trình a3b¯−2.ab¯=585 suy ra 100a+30+b−2.(10a+b)=585 hay 80a−b=555.

Viết hai chữ số của số N theo thứ tự ngược lại thì ta được số có dạng ba¯

Thì được một số nhỏ hơn số N là 18 đơn vị nên ta có phương trình ab¯−ba¯=18 suy ra 10a+b−(10b+a)=18 hay a−b=2.

Từ đó ta có hệ phương trình {80a−b=555a−b=2

Trừ từng vế của hai phương trình ta có (80a−b)−(a−b)=555−2 hay 79a=553 nên a=7(t/m). Với a=7 thay vào phương trình thứ hai ta được b=5(t/m).

Vậy N = 75.

Bài 1.26 trang 25 Toán 9 Tập 1: Trên cánh đồng có diện tích 160 ha của một đơn vị sản xuất, người ta dành 60 ha để cấy thí nghiệm giống lúa mới, còn lại vẫn cấy giống lúa cũ. Khi thu hoạch, đầu tiên người ta gặt 8 ha giống lúa cũ và 7 ha giống lúa mới để đối chứng. Kết quả 7 ha giống lúa mới cho thu hoạch nhiều hơn 8 ha giống lúa cũ là 2 tấn thóc. Biết rằng tổng số thóc (cả hai giống) thu hoạch cả vụ trên 160 ha là 860 tấn. Hỏi năng suất của mỗi giống lúa trên 1 ha là bao nhiêu tấn thóc?

Lời giải:

Số ha cấy lúa cũ là 160−60=100(ha).

Gọi năng suất của mỗi giống lúa trên 1 ha là x,y (tấn thóc) (x,y>0).

Số lúa cũ thu được trên 8 ha giống lúa cũ là 8x (tấn thóc)

Số lúa mới thu được trên 7 ha giống lúa mới là 7y (tấn thóc)

Kết quả 7 ha giống lúa mới cho thu hoạch nhiều hơn 8 ha giống lúa cũ là 2 tấn thóc nên ta có phương trình 7y−8x=2

Số lúa cũ thu được trên 100 ha giống lúa cũ là 100x (tấn thóc)

Số lúa mới thu được trên 60 ha giống lúa mới là 60y (tấn thóc)

Tổng số thóc (cả hai giống) thu hoạch cả vụ trên 160 ha là 860 tấn nên ta có phương trình 100x+60y=860 hay 5x+3y=43

Từ đó ta có hệ phương trình {7y−8x=25x+3y=43

Nhân cả hai vế của phương trình thứ nhất với 3, phương trình thứ hai với 7 ta được hệ phương trình {21y−24x=635x+21y=301

Trừ từng vế của hai phương trình ta được (21y−24x)−(35x+21y)=6−301 hay −59x=−295 nên x=5(t/m).

Với x=5 thay vào phương trình thứ nhất ta được y=6(t/m).

Vậy năng suất của mỗi giống lúa cũ trên 1 ha là 5 tấn thóc

Năng suất của mỗi giống lúa mới trên 1 ha là 6 tấn thóc.

Bài 1.27 trang 25 Toán 9 Tập 1: Hai vật chuyển động đều trên một đường tròn đường kính 20 cm, xuất phát cùng một lúc, từ cùng 1 điểm. Nếu chuyển động ngược chiều thì cứ sau 4 giây chúng lại gặp nhau. Nếu chuyển động cùng chiều thì cứ 20 giây chúng lại gặp nhau. Tính vận tốc (cm/s) của mỗi vật.

Lời giải:

Chu vi của hình tròn là 20.3,14=62,8(cm)

Không mất tổng quát, xét trường hợp vật thứ nhất chuyển động nhanh hơn vật thứ hai.

Gọi vận tốc (cm/s) của mỗi vật là x,y(x>y>0).

Quãng đường vật thứ nhất đi được sau 20 giây là 20x(cm).

Quãng đường vật thứ nhất đi được sau 20 giây là 20y(cm).

Hai vật chuyển động cùng chiều thì cứ 20 giây chúng lại gặp nhau nên ta có phương trình 20x−20y=62,8 hay x−y=3,14

Quãng đường vật thứ nhất đi được sau 4 giây là 4x(cm).

Quãng đường vật thứ nhất đi được sau 4 giây là 4y(cm).

chuyển động ngược chiều thì cứ sau 4 giây chúng lại gặp nhau nên ta có phương trình 4x+4y=62,8 hay x+y=15,7

Từ đó ta có hệ phương trình

{x−y=3,14x+y=15,7

Cộng từng vế của hai phương trình ta có x−y+x+y=3,14+15,7 hay 2x=18,84 nên x=9,42(t/m).

Thay x=9,42 vào phương trình đầu ta được y=6,28(t/m).

Vậy vận tốc của 2 vật lần lượt là 9,42 cm/s và 6,28 cm/s.

Bài 1.28 trang 25 Toán 9 Tập 1: Một người mua hai loại hàng và phải trả tổng cộng là 21,7 triệu đồng, kể cả thuế giá trị gia tăng (VAT) tới mức 10% đối với loại hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 21,8 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng?

Lời giải:

Gọi số tiền người mua hàng phải trả đối với loại hàng thứ nhất và loại hàng thứ hai không kể thuế VAT là x,y(x,y>0) (triệu đồng)

Khi thuế giá trị gia tăng (VAT) tới mức 10% đối với loại hàng thứ nhất thì giá tiền của loại hàng thứ nhất là 110%x=1,1x

8% đối với loại hàng thứ hai thì giá tiền của loại hàng thứ hai là 108%y=1,08y

Người mua hàng phải trả tổng cộng là 21,7 triệu đồng nên ta có phương trình 1,1x+1,08y=21,7

Nếu thuế VAT là 9% đối với cả hai loại hàng thì giá tiền của loại hàng thứ nhất là 109%x=1,09x

Giá tiền của loại hàng thứ hai là 109%y=1,09y

Người đó phải trả tổng cộng 21,8 triệu đồng nên ta có phương trình 1,09x+1,09y=21,8hay x+y=20

Từ đó ta có hệ phương trình {1,1x+1,08y=21,7x+y=20

Từ phương trình thứ hai ta có x=20−y thay vào phương trình nhất ta được 1,1(20−y)+1,08y=21,7 hay −0,02y=0,3 nên y=15(t/m).

Với y=15 thì x=5(t/m).

Vậy nếu không kể thuế VAT thì người đó phải trả 5 triệu đồng cho mặt hàng thứ nhất và 15 triệu cho mặt hàng thứ hai.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 3. Giải bài toán bằng cách lập hệ phương trình

Bài tập cuối chương 1

Bài 4. Phương trình quy về phương trình bậc nhất một ẩn

Bài 5. Bất đẳng thức và tính chất

Luyện tập chung trang 36

Bài 6. Bất phương trình bậc nhất một ẩn

Tags : Tags 1. Vẽ đồ thị của các hàm số sau: y = 2x – 3
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 9 (Cánh diều): Bài tập cuối chương 1 trang 26

Next post

Giải SGK Toán 9 (Chân trời sáng tạo): Bài tập cuối chương 1 trang 22

Bài liên quan:

Giải SGK Toán 9 (Kết nối tri thức): Bài tập ôn tập cuối năm

Giải SGK Toán 9 (Kết nối tri thức): Gene trội trong các thế hệ lai

Giải SGK Toán 9 (Kết nối tri thức): Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel

Giải SGK Toán 9 (Kết nối tri thức): Vẽ hình đơn giản với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 10

Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 106

Bài 32. Hình cầu

Leave a Comment Hủy

Mục lục

  1. Giải sgk Toán 9 Kết nối tri thức | Giải bài tập Toán 9 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  2. Giải SGK Toán 9 Bài 1 (Kết nối tri thức): Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
  3. Giải SGK Toán 9 Bài 2 (Kết nối tri thức): Giải hệ hai phương trình bậc nhất hai ẩn
  4. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 19
  5. Giải SGK Toán 9 Bài 3 (Kết nối tri thức): Giải bài toán bằng cách lập hệ phương trình
  6. Giải SGK Toán 9 Bài 4 (Kết nối tri thức): Phương trình quy về phương trình bậc nhất một ẩn
  7. Giải SGK Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
  8. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 36
  9. Giải SGK Toán 9 Bài 6 (Kết nối tri thức): Bất phương trình bậc nhất một ẩn
  10. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 2 trang 42
  11. Giải SGK Toán 9 Bài 7 (Kết nối tri thức): Căn bậc hai và căn thức bậc hai
  12. Giải SGK Toán 9 Bài 8 (Kết nối tri thức): Khai căn bậc hai với phép nhân và phép chia
  13. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 52
  14. Giải SGK Toán 9 Bài 9 (Kết nối tri thức): Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai
  15. Giải SGK Toán 9 Bài 10 (Kết nối tri thức): Căn bậc ba và căn thức bậc ba
  16. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 63
  17. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 3 trang 65
  18. Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn
  19. Giải SGK Toán 9 Bài 12 (Kết nối tri thức): Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  20. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 80
  21. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 4 trang 81
  22. Giải SGK Toán 9 Bài 13 (Kết nối tri thức): Mở đầu về đường tròn
  23. Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn
  24. Giải SGK Toán 9 Bài 15 (Kết nối tri thức): Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  25. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 96
  26. Giải SGK Toán 9 Bài 16 (Kết nối tri thức): Vị trí tương đối của đường thẳng và đường tròn
  27. Giải SGK Toán 9 Bài 17 (Kết nối tri thức): Vị trí tương đối của hai đường tròn
  28. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 108
  29. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 5
  30. Giải SGK Toán 9 (Kết nối tri thức): Pha chế dung dịch theo nồng độ yêu cầu
  31. Giải SGK Toán 9 (Kết nối tri thức): Tính chiều cao và xác định khoảng cách
  32. Giải SGK Toán 9 Bài 18 (Kết nối tri thức): Hàm số y = ax^2 (a ≠ 0)
  33. Giải SGK Toán 9 Bài 19 (Kết nối tri thức): Phương trình bậc hai một ẩn
  34. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 18
  35. Giải SGK Toán 9 Bài 20 (Kết nối tri thức): Định lí Viète và ứng dụng
  36. Giải SGK Toán 9 Bài 21 (Kết nối tri thức): Giải bài toán bằng cách lập phương trình
  37. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 28
  38. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 6
  39. Giải SGK Toán 9 Bài 22 (Kết nối tri thức): Bảng tần số và biểu đồ tần số
  40. Giải SGK Toán 9 Bài 23 (Kết nối tri thức): Bảng tần số tương đối và biểu đồ tần số tương đối
  41. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 43
  42. Giải SGK Toán 9 Bài 24 (Kết nối tri thức): Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
  43. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 7
  44. Giải SGK Toán 9 Bài 25 (Kết nối tri thức): Phép thử ngẫu nhiên và không gian mẫu
  45. Giải SGK Toán 9 Bài 26 (Kết nối tri thức): Xác suất của biến cố liên quan tới phép thử
  46. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 64
  47. Giải SGK Toán 9 (Kết nối tri thức): Bài tập cuối chương 8
  48. Giải SGK Toán 9 Bài 27 (Kết nối tri thức): Góc nội tiếp
  49. Giải SGK Toán 9 Bài 28 (Kết nối tri thức): Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác
  50. Giải SGK Toán 9 (Kết nối tri thức): Luyện tập chung trang 78
  51. Giải SGK Toán 9 Bài 29 (Kết nối tri thức): Tứ giác nội tiếp
  52. Giải SGK Toán 9 Bài 30 (Kết nối tri thức): Đa giác đều

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán