Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Chân trời

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Biến cố giao và quy tắc nhân xác suất

By admin 06/01/2024 0

Giải bài tập Toán lớp 11 Bài 1: Biến cố giao và quy tắc nhân xác suất

Hoạt động khởi động trang 89 Toán 11 Tập 2: Nguyệt và Nhi cùng tham gia một cuộc thi bắn cung. Xác suất bắn trúng tâm bia của Nguyệt là 0,9 và của Nhi là 0,8. Tính xác suất để cả hai bạn cùng bắn trúng tâm bia.

Lời giải:

Sau bài học này, ta giải quyết được bài toán này như sau:

Ta sẽ xét trong trường hợp Nguyệt và Nhi bắn độc lập với nhau.

Gọi biến cố A: “Nguyệt bắn trúng tâm bia”.

Biến cố B: “Nhi bắn trúng tâm bia”.

Biến cố AB: “Cả hai bạn bắn trúng tâm bia”.

Theo đề có: P(A) = 0,9 và P(B) = 0,8.

Vì A, B độc lập nên P(AB) = P(A)P(B) = 0,9 × 0,8 = 0,72.

Vậy xác suất để cả hai bạn bắn trúng tâm bia là 0,72.

1. Biến cố giao

Hoạt động khám phá 1 trang 89 Toán 11 Tập 2: Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.

a) Hãy viết tập hợp mô tả các biến cố trên.

b) Hãy liệt kê các kết quả của phép thử làm cho cả hai biến cố A và B cùng xảy ra.

Lời giải:

a) A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 6); (2; 3); (3; 2); (6; 1)}.

b) Các kết quả của phép thử làm cho cả hai biến cố A và B cùng xảy ra là (2; 3) và (3; 2).

Thực hành 1 trang 89 Toán 11 Tập 2: Tiếp tục với phép thử ở Ví dụ 1.

a) Gọi D là biến cố “Số chấm xuất hiện trên con xúc xắc thứ nhất là 3”. Hãy xác định các biến cố AD, BD và CD.

b) Gọi A¯ là biến cố đối của biến cố A. Hãy viết tập hợp mô tả các biến cố giao A¯B và A¯C

Lời giải:

a) Ta có D = {(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)}.

Theo hoạt động khám phá 1 và Ví dụ 1, ta có:

A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 6); (2; 3); (3; 2); (6; 1)}.

C = {(1; 6); (6; 1); (1; 5); (5; 1); (1; 4); (4; 1); (1; 3); (3; 1); (1; 2); (2; 1); (1; 1)}.

Khi đó:

AD = {(3; 2)}; BD = {(3; 2)}; CD = {(3; 1)}.

b) A¯B = {(1; 6); (6; 1)}.

A¯C = {(1; 6); (6; 1); (1; 5); (5; 1); (1; 3); (3; 1); (1; 2); (2; 1); (1; 1)}.

2. Hai biến cố xung khắc

Hoạt động khám phá 2 trang 89 Toán 11 Tập 2: Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, gọi B là biến cố “Xuất hiện hai mặt có cùng số chấm”. Hai biến cố A và B có thể đồng thời cùng xảy ra không?

Lời giải:

Ta có A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}.

AB = ∅ .

Do đó A và B không đồng thời xảy ra.

Thực hành 2 trang 90 Toán 11 Tập 2: Hãy tìm một biến cố khác rỗng và xung khắc với cả ba biến cố A, B và C trong Ví dụ 1.

Lời giải:

Biến cố D: “Tích số chấm xuất hiện trên hai con xúc xắc bằng 8”.

Thực hành 3 trang 90 Toán 11 Tập 2: a) Hai biến cố đối nhau xung khắc với không?

b) Hai biến cố xung khắc có phải là hai biến cố đối nhau không?

Lời giải:

a) Hai biến cố đối nhau thì xung khắc.

b) Hai biến cố xung khắc thì chưa chắc là hai biến cố đối nhau.

Ví dụ: Một hộp có 5 viên bi xanh, 4 viên bi đỏ và 2 viên bi vàng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp. Xét hai biến cố:

Biến cố A “Hai viên bi lấy ra cùng màu xanh” và biến cố B “Hai viên bi lấy ra cùng màu đỏ” là hai biến cố xung khắc nhưng không đối nhau.

3. Biến cố độc lập

Hoạt động khám phá 3 trang 90 Toán 11 Tập 2: An và Bình mỗi người gieo một con xúc xắc cân đối và đồng chất. Gọi A là biến cố “An gieo được mặt 6 chấm” và B là biến cố “Bình gieo được mặt 6 chấm”.

a) Tính xác suất của biến cố B.

b) Tính xác suất của biến cố B trong hai trường hợp sau:

+) Biến cố A xảy ra;

+) Biến cố A không xảy ra.

Lời giải:

a) Ta có Ω = {1; 2; 3; 4; 5; 6}, n( Ω ) = 6.

B = {6}, n(B) = 1. Do đó P(B)=nBnΩ=16.

b) Kí hiệu (i; j) là kết quả An gieo được mặt i chấm, Bình gieo được mặt j chấm, với 1 ≤ i; j ≤ 6.

+) Nếu biến cố A xảy ra thì kết quả của phép thử là 1 trong 6 kết quả (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6). Trong đó có 1 kết quả thuận lợi cho biến cố B. Do đó P(B)=16.

+) Nếu biến cố A không xảy ra thì kết quả của phép thử là {(i; j): 1 ≤ i ≤ 5; 1 ≤ j ≤ 6}. Có 30 kết quả.

Trong đó có 5 kết quả thuận lợi cho biến cố B là: (1; 6); (2; 6); (3; 6); (4; 6); (5; 6).

Do đó P(B)=530=16.

Thực hành 4 trang 91 Toán 11 Tập 2: Hãy chỉ ra 2 biến cố độc lập trong phép thử tung 2 đồng xu cân đối và đồng chất.

Lời giải:

Biến cố A: “Đồng xu thứ nhất xuất hiện mặt sấp”.

Biến cố B: “Đồng xu thứ hai xuất hiện mặt ngửa”.

4. Quy tắc nhân xác suất của hai biến cố độc lập

Hoạt động khám phá 4 trang 91 Toán 11 Tập 2: Trong Hoạt động khám phá 3, hãy tính và so sánh P(AB) với P(A)P(B).

Lời giải:

Ta có Ω = {(i; j): 1 ≤ i ≤ 6; 1 ≤ j ≤ 6} suy ra n( Ω ) = 36.

AB = {(6; 6)}, suy ra n(AB) = 1. Do đó P(AB)=136.

Mà P(A)=16; P(B)=16nên P(A)P(B)=16⋅16=136.

Do đó P(AB) = P(A)P(B).

Thực hành 5 trang 92 Toán 11 Tập 2: Hãy trả lời câu hỏi ở hoạt động khởi động nếu Nguyệt và Nhi bắn độc lập với nhau.

Lời giải:

Gọi biến cố A: “Nguyệt bắn trúng tâm bia”.

Biến cố B: “Nhi bắn trúng tâm bia”.

Biến cố AB: “Cả hai bạn bắn trúng tâm bia”.

Theo đề có: P(A) = 0,9 và P(B) = 0,8.

Vì A, B độc lập nên P(AB) = P(A)P(B) = 0,9 × 0,8 = 0,72.

Vậy xác suất để cả hai bạn bắn trúng tâm bia là 0,72.

Bài tập

Bài 1 trang 93 Toán 11 Tập 2: Hộp thứ nhất chứa 3 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 3. Hộp thứ hai chứa 5 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 5. Lấy ra ngẫu nhiên từ mỗi hộp 1 thẻ. Gọi A là biến cố “Tổng các số ghi trên 2 thẻ bằng 6”, B là biến cố “Tích các số ghi trên 2 thẻ là số lẻ”.

a) Hãy viết tập hợp mô tả biến cố AB và tính P(AB).

b) Hãy tìm một biến cố khác rỗng và xung khắc với cả hai biến cố A và B.

Lời giải:

a) Ta có Ω = {(i; j): 1 ≤ i ≤ 3; 1 ≤ j ≤ 5} suy ra n(Ω) = 15.

AB: “Tổng các số ghi trên hai thẻ bằng 6 và tích của chúng là số lẻ”.

Khi đó AB = {(1; 5); (3; 3)}, suy ra n(AB) = 2.

P(AB)=nABnΩ=215 .

b) Biến cố C: “Hai thẻ lấy được đều bằng 2”.

Khi đó biến cố C xung khắc với cả hai biến cố A và B.

Bài 2 trang 93 Toán 11 Tập 2: Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi A là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, B là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.

a) Hãy mô tả bằng lời biến cố AB.

b) Hai biến cố A và B có độc lập không? Tại sao?

Lời giải:

a) Biến cố AB: “Số ghi trên thẻ được chọn chia hết cho cả 2 và 3”.

b) A = {2; 4; 6; 8; 10; 12; 14; 16; 18; 20}, suy ra n(A) = 10.

Do đó P(A)=1021.

B = {3; 6; 9; 12; 15; 18; 21}, suy ra n(B) = 7. Do đó P(B)=721=13 .

AB = {6; 12; 18}, suy ra n(AB) = 3. Do đó P(AB)=321=17.

Vì P(A)P(B) = 1021⋅13=1063≠17 = P(AB) nên A và B không độc lập.

Bài 3 trang 93 Toán 11 Tập 2: Cho A và B là hai biến cố độc lập.

a) Biết P(A) = 0,7 và P(B) = 0,2. Hãy tính xác suất của các biến cố AB, A¯B và A¯B¯ .

b) Biết P(A) = 0,5 và P(AB) = 0,3. Hãy tính xác suất của các biến cố B, A¯B và A¯B¯ .

Lời giải:

a) Vì P(A) = 0,7 nên PA¯=1−0,7=0,3; P(B) = 0,2 nên PB¯=1−0,2=0,8.

Do A, B là hai biến cố độc lập nên P(AB) = P(A)P(B) = 0,7 × 0,2 = 0,14.

Do A, B là hai biến cố độc lập nên A, B cũng là hai biến cố độc lập.

Do đó PA¯B=PA¯PB = 0,3 × 0,2 = 0,06.

Do A, B là hai biến cố độc lập nên A¯, B¯ cũng là hai biến cố độc lập.

Do đó PA¯B¯=PA¯PB¯ = 0,3 × 0,8 = 0,24.

b) Vì P(A) = 0,5 nên PA¯=1−0,5=0,5.

Do A, B là hai biến cố độc lập nên P(AB) = P(A)P(B) nên P(B)=P(AB)P(A)=0,30,5=0,6.

Vì P(B) = 0,6 nên PB¯=1−0,6=0,4.

Do A, B là hai biến cố độc lập nên A¯ , B cũng là hai biến cố độc lập.

Do đó PA¯B=PA¯PB = 0,5 × 0,6 = 0,3.

Do A, B là hai biến cố độc lập nên A¯, B¯ cũng là hai biến cố độc lập.

Do đó PA¯B¯=PA¯PB¯ = 0,5 × 0,4 = 0,2.

Bài 4 trang 93 Toán 11 Tập 2: Một xạ thủ bắn lần lượt 2 viên đạn vào một bia. Xác suất trúng đích của viên thứ nhất và thứ hai lần lượt là 0,9 và 0,6. Biết rằng kết quả các lần bắn độc lập với nhau. Tính xác suất của các biến cố sau bằng cách sử dụng sơ đồ hình cây:

a) “Cả 2 lần bắn đều trúng đích”;

b) “Cả 2 lần bắn đều không trúng đích”;

c) “Lần bắn thứ nhất trúng đích, lần bắn thứ hai không trúng đích”.

Lời giải:

Bài 4 trang 93 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Theo sơ đồ trên thì:

a) Xác suất cả hai lần bắn trúng đích là 0,54.

b) Xác suất cả hai lần bắn đều không trúng đích là 0,04.

c) Xác suất để lần bắn thứ nhất trúng đích, lần bắn thứ hai không trúng đích là 0,36.

Bài 5 trang 93 Toán 11 Tập 2: Một bệnh truyền nhiễm có xác suất truyền bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh Lâm tiếp xúc với 1 người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất anh Lâm bị lây bệnh từ người bệnh mà anh tiếp xúc đó.

Lời giải:

Bài 5 trang 93 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Xác suất anh Lâm không bị lây bệnh từ người bệnh là : 0,2 × 0,9 = 0,18.

Xác suất anh Lâm bị lây bệnh từ người bệnh là : 1 – 0,18 = 0,82.

Vậy xác suất anh Lâm bị lây bệnh từ người bệnh là 0,82.

Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 8

Bài 1: Biến cố giao và quy tắc nhân xác suất

Bài 2: Biến cố hợp và quy tắc cộng xác suất

Bài tập cuối chương 9

Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi

Bài 2: Ứng dụng lôgarit vào đo lường độ pH của dung dịch

Tags : Tags 1. Giải sgk Toán 11 Chân trời sáng tạo Giải bài tập Toán 11 Tập 1   chi tiết)   Tập 2 Chân trời sáng tạo (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit

Next post

Sách bài tập Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác

Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác

Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị

Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác

Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 42

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác
  3. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác
  4. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị
  5. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác
  6. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 42
  7. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số
  8. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng
  9. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Cấp số nhân
  10. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 2
  11. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Giới hạn của dãy số
  12. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giới hạn của hàm số
  13. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số liên tục
  14. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 3
  15. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Điểm, đường thẳng và mặt phẳng trong không gian
  16. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Đường thẳng và mặt phẳng song song
  18. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hai mặt phẳng song song
  19. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phép chiếu song song
  20. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 4
  21. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Số trung bình và mốt của mẫu số liệu ghép nhóm
  22. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
  23. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 5
  24. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Tìm hiểu hàm số lượng giác bằng phần mềm GeoGebra
  25. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Dùng công thức cấp số nhân để dự báo dân số
  26. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Phép tính lũy thừa
  27. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit
  28. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit
  29. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Phương trình, bất phương trình mũ và lôgarit
  30. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 6 trang 34
  31. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Đạo hàm
  32. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Các quy tắc tính đạo hàm
  33. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7 trang 51
  34. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Hai đường thẳng vuông góc
  35. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Đường thẳng vuông góc với mặt phẳng
  36. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hai mặt phẳng vuông góc
  37. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Khoảng cách trong không gian
  38. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  39. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 8
  40. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Biến cố hợp và quy tắc cộng xác suất
  41. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 9
  42. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
  43. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Ứng dụng lôgarit vào đo lường độ pH của dung dịch

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán