Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Chân trời

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Dùng công thức cấp số nhân để dự báo dân số

By admin 09/07/2023 0

Giải bài tập Toán lớp 11 Bài 2: Dùng công thức cấp số nhân để dự báo dân số
Chuẩn bị
– Máy tính cầm tay hoặc máy tính để bàn, máy tính bảng, máy tính xách tay có cài phần mềm Microsoft Excel.
– Sách giáo khoa Toán 11, tập một – bộ sách Chân trời sáng tạo.
Tổ chức hoạt động
Chia lớp thành các nhóm, mỗi nhóm từ 4 đến 8 học sinh.
Nhóm trưởng phân công các thành viên trong nhóm thực hiện công việc theo các bước sau:
1. Tra cứu dân số Việt Nam ở thời điểm hiện tại. Ví dụ: Năm 2020, dân số Việt Nam là A = P(1) = 97,34 triệu người.
2. Tra cứu tỉ lệ phần trăm tăng dân số trung bình hằng năm. Ví dụ: a% = 1,14%.
(Giả sử tỉ lệ này không đổi qua các năm.)
3. Chọn năm thứ n sau năm hiện tại muốn dự báo dân số. Ví dụ: n = 5.
4. Vận dụng công thức P(n) = A(1 + a%)n – 1 để tính số hạng thứ n của một cấp số nhân có số hạng đầu là A và công bội là q = (1 + a%).
Ví dụ: P(5) = 97,34(1 + 1,14%)4 = 101,86.
5. Lập bảng thống kê dự báo dân số từng năm từ năm 2020 đến năm 2030 theo mẫu sau:
Toán 11 Chân trời sáng tạo Bài 2: Dùng công thức cấp số nhân để dự báo dân số | Giải Toán 11
6. Vẽ biểu đồ đoạn thẳng biểu diễn dữ liệu dự báo dân số theo các năm.
Toán 11 Chân trời sáng tạo Bài 2: Dùng công thức cấp số nhân để dự báo dân số | Giải Toán 11
7. Các nhóm báo cáo, thuyết trình, giới thiệu sản phẩm của nhóm trước lớp.
Chú ý:
– Chúng ta có thể dự báo dân số của địa phương, tỉnh, thành phố nơi đang sinh sống để tăng tính thời sự và kết nối.ư
– Chúng ta có thể dự báo đồng thời một vài quốc gia để so sánh các kết quả với nhau.a
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

==== ~~~~~~ ====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Thực hiện phép tính (4,375 + 5,2) – (6,452 – 3,55) rồi làm tròn kết quả đến chữ số thập phân thứ 2, ta được kết quả là:

Next post

Ước lượng kết quả của phép tính 4,87+2,82,3+1,9

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác

Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác

Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị

Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác

Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 42

Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giá trị lượng giác của một góc lượng giác
  3. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Các công thức lượng giác
  4. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị
  5. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác
  6. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 42
  7. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số
  8. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng
  9. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Cấp số nhân
  10. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 2
  11. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Giới hạn của dãy số
  12. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Giới hạn của hàm số
  13. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số liên tục
  14. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 3
  15. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Điểm, đường thẳng và mặt phẳng trong không gian
  16. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Đường thẳng và mặt phẳng song song
  18. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Hai mặt phẳng song song
  19. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Phép chiếu song song
  20. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 4
  21. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Số trung bình và mốt của mẫu số liệu ghép nhóm
  22. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
  23. Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 5
  24. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Tìm hiểu hàm số lượng giác bằng phần mềm GeoGebra
  25. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Phép tính lũy thừa
  26. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Phép tính lôgarit
  27. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số mũ. Hàm số lôgarit
  28. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Phương trình, bất phương trình mũ và lôgarit
  29. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 6 trang 34
  30. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Đạo hàm
  31. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Các quy tắc tính đạo hàm
  32. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7 trang 51
  33. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Hai đường thẳng vuông góc
  34. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Đường thẳng vuông góc với mặt phẳng
  35. Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hai mặt phẳng vuông góc
  36. Giải SGK Toán 11 Bài 4 (Chân trời sáng tạo): Khoảng cách trong không gian
  37. Giải SGK Toán 11 Bài 5 (Chân trời sáng tạo): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  38. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 8
  39. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Biến cố giao và quy tắc nhân xác suất
  40. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Biến cố hợp và quy tắc cộng xác suất
  41. Giải SGK Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 9
  42. Giải SGK Toán 11 Bài 1 (Chân trời sáng tạo): Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
  43. Giải SGK Toán 11 Bài 2 (Chân trời sáng tạo): Ứng dụng lôgarit vào đo lường độ pH của dung dịch

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán