Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Kết nối tri thức

Giải SGK Toán 11 Bài 8 (Kết nối tri thức): Mẫu số liệu ghép nhóm

By admin 08/07/2023 0

Giải bài tập Toán lớp 11 Bài 8: Mẫu số liệu ghép nhóm
Mở đầu trang 58 Toán 11 Tập 1: Trong kì thi tốt nghiệp Trung học phổ thông năm 2021 đợt 1 có 344 752 thí sinh dự thi cả ba môn Toán, Vật lí, Hóa học (theo: vietnamnet.vn, ngày 26/07/2021). Giả sử điểm thi của các thí sinh này được cho trong bảng số liệu sau:
Bài 8: Mẫu số liệu ghép nhóm - Kết nối tri thức
Các trường đại học, cao đẳng tuyển sinh theo tổ hợp A00 quan tâm đến tổng điểm ba môn của các thí sinh này. Biểu diễn dãy số liệu về tổng điểm ba môn của các thí sinh này thế nào để các trường thấy được bức tranh tổng thể về kết quả thi?
Lời giải:
 
Để thuận tiện cho các trường thấy được bức tranh tổng thể về kết quả thi, ta nên biểu diễn dãy số liệu về tổng điểm ba môn của các thí sinh theo mẫu số liệu ghép nhóm với các nhóm phù hợp.
1. Giới thiệu về mẫu số liệu ghép nhóm
HĐ1 trang 59 Toán 11 Tập 1: Xét dữ liệu cho trong tình huống mở đầu.
a) Mẫu số liệu về tổng điểm, kí hiệu là (T), có bao nhiêu giá trị?
b) Nếu lập bảng tần số cho mẫu số liệu (T) thì có thể hình dung được bức tranh tổng thể về kết quả thi không? Vì sao?
c) Mẫu số liệu (T) được mô tả dưới dạng bảng thống kê sau:






Tổng điểm

< 6

[6; 7)

[7; 8)

…

[28; 29)

[29; 30]

Số thí sinh

23

69

192

…

216

12

Hãy đọc và giải thích số liệu được biểu diễn trong bảng thống kê.
Lời giải:
a) Có 344 752 thí sinh dự thi nên mẫu số liệu về tổng điểm (T) có 344 752 giá trị.
b) Nếu lập bảng tần số cho mẫu số liệu (T) thì không thể hình dung được bức tranh tổng thể về kết quả thi vì tổng điểm thi 3 ba môn của các thí sinh có rất nhiều giá trị khác nhau dẫn đến bảng tần số sẽ dài dòng và phức tạp.
c) Từ bảng thống kê trên ta có thể thấy số lượng thí sinh đạt tổng điểm 3 môn trong từng nhóm điểm. Chẳng hạn
– Số thí sinh có tổng điểm 3 môn nhỏ hơn 6 là 23 thí sinh;
– Số thí sinh có tổng điểm 3 môn từ 6 đến dưới 7 điểm là 69 thí sinh;
…
– Số thí sinh có tổng điểm 3 môn từ 29 đến 30 điểm là 12 thí sinh.
Luyện tập 1 trang 59 Toán 11 Tập 1: Cho mẫu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên một công ty như sau:






Thời gian

[15; 20)

[20; 25)

[25; 30)

[30; 35)

[35; 40)

[40; 45)

[45; 50)

Số nhân viên

6

14

25

37

21

13

9

Đọc và giải thích mẫu số liệu này.
Lời giải:
Mẫu số liệu đã cho là mẫu số liệu ghép nhóm gồm 7 nhóm mô tả về thời gian đi từ nhà đến nơi làm việc của các nhân viên một công ty:
– Nhóm 1: Thời gian đi từ 15 phút đến dưới 20 phút, có 6 nhân viên;
– Nhóm 2: Thời gian đi từ 20 phút đến dưới 25 phút, có 14 nhân viên;
– Nhóm 3: Thời gian đi từ 25 phút đến dưới 30 phút, có 25 nhân viên;
– Nhóm 4: Thời gian đi từ 30 phút đến dưới 35 phút, có 37 nhân viên;
– Nhóm 5: Thời gian đi từ 35 phút đến dưới 40 phút, có 21 nhân viên;
– Nhóm 6: Thời gian đi từ 40 phút đến dưới 45 phút, có 13 nhân viên;
– Nhóm 7: Thời gian đi từ 45 phút đến dưới 50 phút, có 9 nhân viên.
2. Ghép nhóm mẫu số liệu
HĐ2 trang 60 Toán 11 Tập 1: Chỉ số BMI (đo bằng w/h2, trong đó w là cân nặng đơn vị kilôgam, h là chiều cao đơn vị là mét) của các học sinh trong một tổ được cho như sau:
HĐ2 trang 60 Toán 11 Tập 1 - Kết nối tri thức
Một người có chỉ số BMI nhỏ hơn 18,5 được xem là thiếu cân; từ 18,5 đến dưới 23 là có cân nặng lí tưởng so với chiều cao; từ 23 trở lên là thừa cân. Hãy lập mẫu số liệu ghép nhóm cho mẫu số liệu trên để biểu diễn tình trạng cân nặng so với chiều cao của các học sinh trong tổ.
Lời giải:
Quan sát mẫu số liệu đã cho, ta thấy:
– Có 1 giá trị BMI của học sinh trong tổ nhỏ hơn 18,5, đó là 16,8;
– Có 5 giá trị BMI của học sinh trong tổ thuộc nửa khoảng từ 18,5 đến 23, đó là 19,2; 21,1; 20,6; 18,7; 19,1;
– Có 2 giá trị BMI của học sinh trong tổ từ 23 trở lên, đó là 23,5; 25,2.
Từ đó ta lập được mẫu số liệu ghép nhóm về tình trạng cân nặng so với chiều cao của các học sinh trong tổ như sau:






Chỉ số BMI (w/h2)

Dưới 18,5

Từ 18,5 đến dưới 23

Từ 23 trở lên

Số học sinh

1

5

2

Luyện tập 2 trang 60 Toán 11 Tập 1: Cân nặng (kg) của 35 người trưởng thành tại một khu dân cư được cho như sau:
Luyện tập 2 trang 60 Toán 11 Tập 1 - Kết nối tri thức
Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [40; 45).
Lời giải:
Độ dài của mỗi nhóm là 45 – 40 = 5.
Giá trị nhỏ nhất là 40, giá trị lớn nhất là 63, do đó, khoảng biến thiên của mẫu số liệu là 63 – 40 = 23. Để cho thuận tiện, ta chọn đầu mút trái của nhóm đầu tiên là 40 và đầu mút phải của nhóm cuối cùng là 65, ta được các nhóm là [40; 45), [45; 50), [50; 55), [55; 60), [60; 65). Đếm số giá trị thuộc mỗi nhóm, ta có mẫu số liệu ghép nhóm như sau:






Cân nặng (kg)

[40; 45)

[45; 50)

[50; 55)

[55; 60)

[60; 65)

Số người

5

7

11

7

5

 
Vận dụng trang 61 Toán 11 Tập 1: Một công ty may quần áo đồng phục học sinh cho biết cỡ áo theo chiều cao của học sinh được tính như sau:






Chiều cao (cm)

[150; 160)

[160; 167)

[167; 170)

[170; 175)

[175; 180)

Cỡ áo

S

M

L

XL

XXL

 
Công ty muốn ước lượng tỉ lệ các cỡ áo khi may cho học sinh lớp 11 đã đo chiều cao của 36 học sinh nam khối 11 của một trường và thu được mẫu số liệu sau (đơn vị là centimét):
Vận dụng trang 61 Toán 11 Tập 1 - Kết nối tri thức
a) Lập bảng tần số ghép nhóm của mẫu số liệu với các nhóm đã cho ở bảng trên.
b) Công ty may 500 áo đồng phục cho học sinh lớp 11 thì nên may số lượng áo theo mỗi cỡ là bao nhiêu chiếc?
Lời giải:
a) Đếm số giá trị thuộc mỗi nhóm, ta lập được bảng tần số ghép nhóm của mẫu số liệu với các nhóm đã cho ở bảng trên như sau:






Chiều cao (cm)

[150; 160)

[160; 167)

[167; 170)

[170; 175)

[175; 180)

Số học sinh

0

22

8

6

0

b) Công ty may 500 áo đồng phục cho học sinh lớp 11 thì nên may số lượng áo theo mỗi cỡ như sau:
– Không nên may áo cỡ S và cỡ XXL;
– Số lượng áo cỡ M nên may là 2236.500≈306 (chiếc);
– Số lượng áo cỡ L nên may là 836.500≈111 (chiếc);
– Số lượng áo cỡ XL nên may là 500 – 306 – 111 = 83 (chiếc).
Bài tập
Bài 3.1 trang 61 Toán 11 Tập 1: Trong các mẫu số liệu sau, mẫu nào là mẫu số liệu ghép nhóm? Đọc và giải thích mẫu số liệu ghép nhóm đó.
a) Số tiền mà sinh viên chi cho thanh toán cước điện thoại trong tháng.






Số tiền (nghìn đồng)

[0; 50)

[50; 100)

[100; 150)

[150; 200)

[200; 250)

Số sinh viên

5

12

23

17

3

b) Thống kê nhiệt độ tại một địa điểm trong 40 ngày, ta có bảng số liệu sau:






Nhiệt độ (°C)

[19; 22)

[22; 25)

[25; 28)

[28; 31)

Số ngày

7

15

12

6

 
Lời giải:
a) Mẫu số liệu đã cho là mẫu số liệu ghép nhóm.
Mẫu số liệu này mô tả về số tiền mà sinh viên chi cho thanh toán cước điện thoại trong tháng, gồm có 5 nhóm. Cụ thể:
– Nhóm thanh toán với số tiền từ 0 đến dưới 50 nghìn đồng, có 5 sinh viên;
– Nhóm thanh toán với số tiền từ 50 đến dưới 100 nghìn đồng, có 12 sinh viên;
– Nhóm thanh toán với số tiền từ 100 đến dưới 150 nghìn đồng, có 23 sinh viên;
– Nhóm thanh toán với số tiền từ 150 đến dưới 200 nghìn đồng, có 17 sinh viên;
– Nhóm thanh toán với số tiền từ 200 đến dưới 250 nghìn đồng, có 3 sinh viên;
b) Mẫu số liệu đã cho là mẫu số liệu ghép nhóm.
Mẫu số liệu này mô tả về nhiệt độ tại một địa điểm trong 40 ngày, gồm 4 nhóm nhiệt độ: từ 19 °C đến dưới 22 °C; từ 22 °C đến dưới 25 °C; từ 25 °C đến dưới 28 °C; từ 28 °C đến dưới 31 °C. Cụ thể:
– Có 7 ngày có nhiệt độ từ 19 °C đến dưới 22 °C;
– Có 15 ngày có nhiệt độ từ 22 °C đến dưới 25 °C;
– Có 12 ngày có nhiệt độ từ 25 °C đến dưới 28 °C;
– Có 6 ngày có nhiệt độ từ 28 °C đến dưới 31 °C.
Bài 3.2 trang 61 Toán 11 Tập 1: Thời gian ra sân (giờ) của một số cựu cầu thủ ở giải ngoại hạng Anh qua các thời kì được cho như sau:
Bài 3.3 trang 61 Toán 11 Tập 1 - Kết nối tri thức
Hãy chuyển mẫu số liệu trên sang dạng ghép nhóm với bảy nhóm có độ dài bằng nhau.
Lời giải:
Giá trị nhỏ nhất của mẫu số liệu là 492, giá trị lớn nhất của mẫu số liệu là 653, do đó khoảng biến thiên của mẫu số liệu là R = 653 – 492 = 161. Ta cần chia thành bảy nhóm có độ dài bằng nhau. Để cho thuận tiện, ta chọn đầu mút trái của nhóm đầu tiên là 485 và đầu mút phải của nhóm cuối cùng bằng 660 và độ dài của mỗi nhóm bằng 25 ta được các nhóm là [485; 510), [510; 535), [535; 560), [560; 585), [585; 610), [610; 635), [635; 660]. Đếm số giá trị thuộc mỗi nhóm, ta có mẫu số liệu ghép nhóm như sau:

==== ~~~~~~ ====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Số nào dưới dây là giá trị của biểu thức B = 211 – 513 + 911 – 813

Next post

Giải Chuyên đề Toán 11 Kết nối tri thức Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40

Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  6. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56
  10. Giải SGK Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm
  11. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 3 trang 69
  12. Giải SGK Toán 11 Bài 10 (Kết nối tri thức): Đường thẳng và mặt phẳng trong không gian
  13. Giải SGK Toán 11 Bài 11 (Kết nối tri thức): Hai đường thẳng song song
  14. Giải SGK Toán 11 Bài 12 (Kết nối tri thức): Đường thẳng và mặt phẳng song song
  15. Giải SGK Toán 11 Bài 13 (Kết nối tri thức): Hai mặt phẳng song song
  16. Giải SGK Toán 11 Bài 14 (Kết nối tri thức): Phép chiếu song song
  17. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 4
  18. Giải SGK Toán 11 Bài 15 (Kết nối tri thức): Giới hạn của dãy số
  19. Giải SGK Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số
  20. Giải SGK Toán 11 Bài 17 (Kết nối tri thức): Hàm số liên tục
  21. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối Chương 5
  22. Giải SGK Toán 11 (Kết nối tri thức): Một vài áp dụng của toán học trong tài chính
  23. Giải SGK Toán 11 (Kết nối tri thức): Lực căng mặt ngoài của nước
  24. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  25. Giải sgk Toán 11 Chân trời sáng tạo | Giải bài tập Toán 11 Tập 1, Tập 2 Chân trời sáng tạo (hay, chi tiết)
  26. Giải sgk Toán 11 Cánh diều | Giải bài tập Toán 11 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  27. Giải SGK Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  28. Giải SGK Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  29. Giải SGK Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  30. Giải SGK Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  31. Giải SGK Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  32. Giải SGK Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  33. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 7
  34. Giải SGK Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  35. Giải SGK Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  36. Giải SGK Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  37. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 8
  38. Giải SGK Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  39. Giải SGK Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  40. Giải SGK Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  41. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 9
  42. Giải SGK Toán 11 (Kết nối tri thức): Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit
  43. Giải SGK Toán 11 (Kết nối tri thức): Hoạt động thực hành trải nghiệm Hình học
  44. Giải SGK Toán 11 (Kết nối tri thức): Bài tập ôn tập cuối năm
  45. Giải sgk Công nghệ 11 Kết nối tri thức | Giải bài tập Công nghệ 11 KNTT (hay nhất, ngắn gọn) | Soạn Công nghệ 11 Kết nối tri thức
  46. Sách bài tập Toán 11 Bài 15 (Kết nối tri thức): Giới hạn của dãy số
  47. Hoạt động trải nghiệm lớp 11 Kết nối tri thức | HĐTN lớp 11 Kết nối tri thức | Giải HĐTN 11 | Soạn, Giải bài tập Hoạt động trải nghiệm 11 hay nhất | HĐTN lớp 11 KNTT
  48. Sách bài tập Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số
  49. Sách bài tập Toán 11 Bài 17 (Kết nối tri thức): Hàm số liên tục
  50. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 5 trang 87

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán