Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 11 - Kết nối tri thức

Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 8

By admin 02/01/2024 0

Giải bài tập Toán lớp 11 Bài tập cuối chương 8

Bài tập

Bài 8.16 trang 79 Toán 11 Tập 2: Một hộp đựng 20 tấm thẻ cùng loại được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi A là biến cố “Rút được tấm thẻ ghi số chẵn lớn hơn 9”; B là biến cố “Rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15”.

Số phần tử của A ∪ B là:

A. 11.    B. 10 .    C. 11.    D. 13.

Lời giải:

Đáp án đúng là: A

Ta có:

A = {10; 12; 14; 16; 18; 20}.

B = {8; 9; 10; 11; 12; 13; 14; 15}.

Vậy A ∪ B = {8; 9; 10; 11; 12; 13; 14; 15; 16; 18; 20}.

Bài 8.17 trang 79 Toán 11 Tập 2: Một hộp đựng 20 tấm thẻ cùng loại được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi A là biến cố “Rút được tấm thẻ ghi số chẵn lớn hơn 9”; B là biến cố “Rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15”.

Số phần tử của AB là:

A. 5.   B. 6.    C. 3.    D. 4.

Lời giải:

Đáp án đúng là: C

Ta có:

A = {10; 12; 14; 16; 18; 20}

B = {8; 9; 10; 11; 12; 13; 14; 15}

Vậy AB = A ∩ B = {10; 12; 14}.

Bài 8.18 trang 79 Toán 11 Tập 2: Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.

Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là:

A. 4750 .    B. 3750 .    C. 3950 .    D. 4150 .

Lời giải:

Đáp án đúng là: A

Gọi A là biến cố “Người được chọn thành thạo tiếng Anh”; B là biến cố “Người được chọn thành thạo tiếng Pháp”.

Biến cố: “Người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp” là biến cố hợp của A và B.

Khi đó P(A) = 3150 ; P(B) = 2150 , P(AB) = 550=110.

Ta có: P(A ∪ B) = P(A) + P(B) – P(AB) = 3150+2150−110=4750 .

Vậy xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc tiếng Pháp là 4750 .

Bài 8.19 trang 79 Toán 11 Tập 2: Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.

Xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là

A. 750 .    B. 350 .    C. 950 .    D. 1150 .

Lời giải:

Đáp án đúng là: B

Gọi E là biến cố “Người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp”.

Khi đó, E¯ là biến cố “Người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp”.

Ta có: E¯ = A ∪ B.

Do đó, P(E) = 1 – P(E¯) = 1 – P(A ∪ B) = 1 – 4750=350.

Vậy xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là 350.

Bài 8.20 trang 79 Toán 11 Tập 2: Một lớp có 40 học sinh, trong đó có 23 học sinh thích bóng chuyền, 18 học sinh thích bóng rổ, 26 học sinh thích bóng chuyền hoặc bóng rổ hoặc cả hai. Chọn ngẫu nhiên một học sinh trong lớp.

Xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là

A. 920 .    B. 720 .    C. 1940 .    D. 2140 .

Lời giải:

Đáp án đúng là: B

Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh)

Gọi A là biến cố “Học sinh thích bóng chuyền”; B là biến cố “Học sinh thích bóng rổ”; E là biến cố “Học sinh không thích cả bóng chuyền và bóng rổ”.

Khi đó E¯ = A ∪ B.

P(A) = 2340 ; P(B) = 1840=920 ; P(AB) = 1540=38 .

P( ) = P(A ∪ B) = P(A) + P(B) – P(AB) = 2340+920−38=1320 .

Suy ra: P(E) = 1 – P(E¯) = 1 – 1320=720 .

Vậy xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là 720 .

Bài 8.21 trang 79 Toán 11 Tập 2: Một lớp có 40 học sinh, trong đó có 23 học sinh thích bóng chuyền, 18 học sinh thích bóng rổ, 26 học sinh thích bóng chuyền hoặc bóng rổ hoặc cả hai. Chọn ngẫu nhiên một học sinh trong lớp.

Xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là

A. 740 .    B. 940 .    C. 15 .    D. 1140 .

Lời giải:

Đáp án đúng là: C

Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh).

Số học sinh thích bóng chuyền và không thích bóng rổ là 23 – 15 = 8 (học sinh).

Vậy xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là: 840=15.

Bài 8.22 trang 80 Toán 11 Tập 2: Hai vận động viên bắn súng A và B mỗi người bắn một viên đạn vào tấm bia một cách độc lập. Xét các biến cố sau:

M: “Vận động viên A bắn trúng vòng 10”;

N: “Vận động viên B bắn trúng vòng 10”.

Hãy biểu diễn các biến cố sau theo biến cố M và N:

C: “Có ít nhất một vận động viên bắn trúng vòng 10”;

D: “Cả hai vận động viên bắn trúng vòng 10”;

E: “Cả hai vận động viên đều không bắn trúng vòng 10”;

F: “Vận động viên A bắn trúng và vận động viên B không bắn trúng vòng 10”;

G: “Chỉ có duy nhất một vận động viên bắn trúng vòng 10”.

Lời giải:

Ta có:

C = M ∪ N;

D = MN;

E = M¯N¯ ;

F = MN¯;

G = MN¯ ∪M¯ N.

Bài 8.23 trang 80 Toán 11 Tập 2: Một đoàn khách du lịch gồm 31 người, trong đó có 7 người đến từ Hà Nội, 5 người đến từ Hải Phòng. Chọn ngẫu nhiên một người trong đoàn. Tính xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng.

Lời giải:

Số cách chọn một người trong đoàn là: 31.

Số người đến từ Hà Nội hoặc đến từ Hải Phòng là: 7 + 5 = 12.

Vậy xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng là 1231 .

Bài 8.24 trang 80 Toán 11 Tập 2: Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:

A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;

B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”;

C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”;

D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.

Chứng tỏ rằng các cặp biến cố A và C; B và C; C và D không độc lập.

Lời giải:

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó n(Ω) = 6 . 6 = 36.

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)}. Suy ra: P(A) = 636=16.

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)}. Suy ra: P(B) = 636=16.

C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)}. Suy ra: P(C) = 536.

D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}. Suy ra: P(D) = 636=16.

Do đó:

P(A) . P(C) = 16.536=5216;

P(B) . P(C) = 16.536=5216;

P(C) . P(D) = 536.16=5216.

Mặt khác:

AC = ∅. Suy ra: P(AC) = 0.

BC = {(6; 2)}. Suy ra: P(BC) = 136.

CD = ∅. Suy ra: P(CD) = 0

Khi đó:

P(AC) ≠ P(A) . P(C) ;

P(BC) ≠ P(B) . P(C);

P(CD) ≠ P(C) . P(D).

Vậy các cặp biến cố A và C; B và C; C và D không độc lập.

Bài 8.25 trang 80 Toán 11 Tập 2: Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là 0,92 và 0,98.

Dùng sơ đồ hình cây, tính xác suất để:

a) Cả hai chuyến bay khởi hành đúng giờ;

b) Chỉ có một chuyến bay khởi hành đúng giờ;

c) Có ít nhất một trong hai chuyến bay khởi hành đúng giờ.

Lời giải:

Gọi biến cố A: “Chuyến bay của hãng X khởi hành đúng giờ”, biến cố B: “Chuyến bay của hãng Y khởi hành đúng giờ”. Từ giả thiết, ta có hai biến cố A và B độc lập.

Ta có sơ đồ hình cây để mô tả như sau:

Bài 8.25 trang 80 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Theo sơ đồ hình cây, ta có:

a) P(AB) = P(A) . P(B) = 0,92 . 0,98 = 0,9016.

Vậy xác suất để cả hai chuyến bay khởi hành đúng giờ là 0,9016.

b) P(AB¯∪A¯B) = P(AB¯) + P(A¯B) = 0,92 . 0,02 + 0,08 . 0,98 = 0,0968.

Vậy xác suất để chỉ có một chuyến bay khởi hành đúng giờ 0,0968.

c) P(A¯B¯) = 0,08 . 0,02 = 0,0016

Suy ra P(A ∪ B) = 1 – P(A¯B¯) = 1 – 0,0016 = 0,9984.

Vậy xác suất để có ít nhất một trong hai chuyến bay khởi hành đúng giờ là 0,9984.

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Tags : Tags 1. Giải sgk Toán 11 Chân trời sáng tạo Giải bài tập Toán 11 Tập 1   chi tiết)   Tập 2 Chân trời sáng tạo (hay
Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập

Next post

Giải SGK Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm

Bài liên quan:

Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40

Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  6. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Giải SGK Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Giải SGK Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 2 trang 56
  10. Giải SGK Toán 11 Bài 8 (Kết nối tri thức): Mẫu số liệu ghép nhóm
  11. Giải SGK Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm
  12. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 3 trang 69
  13. Giải SGK Toán 11 Bài 10 (Kết nối tri thức): Đường thẳng và mặt phẳng trong không gian
  14. Giải SGK Toán 11 Bài 11 (Kết nối tri thức): Hai đường thẳng song song
  15. Giải SGK Toán 11 Bài 12 (Kết nối tri thức): Đường thẳng và mặt phẳng song song
  16. Giải SGK Toán 11 Bài 13 (Kết nối tri thức): Hai mặt phẳng song song
  17. Giải SGK Toán 11 Bài 14 (Kết nối tri thức): Phép chiếu song song
  18. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 4
  19. Giải SGK Toán 11 Bài 15 (Kết nối tri thức): Giới hạn của dãy số
  20. Giải SGK Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số
  21. Giải SGK Toán 11 Bài 17 (Kết nối tri thức): Hàm số liên tục
  22. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối Chương 5
  23. Giải SGK Toán 11 (Kết nối tri thức): Một vài áp dụng của toán học trong tài chính
  24. Giải SGK Toán 11 (Kết nối tri thức): Lực căng mặt ngoài của nước
  25. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  26. Giải sgk Toán 11 Chân trời sáng tạo | Giải bài tập Toán 11 Tập 1, Tập 2 Chân trời sáng tạo (hay, chi tiết)
  27. Giải sgk Toán 11 Cánh diều | Giải bài tập Toán 11 Cánh diều Tập 1, Tập 2 (hay, chi tiết)
  28. Giải SGK Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  29. Giải SGK Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  30. Giải SGK Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  31. Giải SGK Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  32. Giải SGK Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  33. Giải SGK Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  34. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 7
  35. Giải SGK Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  36. Giải SGK Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  37. Giải SGK Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  38. Giải SGK Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  39. Giải SGK Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  40. Giải SGK Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  41. Giải SGK Toán 11 (Kết nối tri thức): Bài tập cuối chương 9
  42. Giải SGK Toán 11 (Kết nối tri thức): Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit
  43. Giải SGK Toán 11 (Kết nối tri thức): Hoạt động thực hành trải nghiệm Hình học
  44. Giải SGK Toán 11 (Kết nối tri thức): Bài tập ôn tập cuối năm
  45. Giải sgk Công nghệ 11 Kết nối tri thức | Giải bài tập Công nghệ 11 KNTT (hay nhất, ngắn gọn) | Soạn Công nghệ 11 Kết nối tri thức
  46. Sách bài tập Toán 11 Bài 15 (Kết nối tri thức): Giới hạn của dãy số
  47. Hoạt động trải nghiệm lớp 11 Kết nối tri thức | HĐTN lớp 11 Kết nối tri thức | Giải HĐTN 11 | Soạn, Giải bài tập Hoạt động trải nghiệm 11 hay nhất | HĐTN lớp 11 KNTT
  48. Sách bài tập Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số
  49. Sách bài tập Toán 11 Bài 17 (Kết nối tri thức): Hàm số liên tục
  50. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 5 trang 87

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán