Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Kết nối

Giải SGK Toán 7 Bài 32 (Kết nối tri thức): Quan hệ giữa đường vuông góc và đường xiên

By admin 18/04/2023 0

Giải bài tập Toán lớp 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên

Giải Toán 7 trang 64 Tập 2

HĐ trang 64 Toán lớp 7: Cho điểm A không nằm trên đường thẳng d

a) Hãy vẽ đường vuông góc AH và một đường xiên AM từ A đến d.

b) Em hãy giải thích vì sao AH < AM

Phương pháp giải:

Áp dụng: Trong 1 tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.

Lời giải:

a)

HĐ trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)

b) Trong tam giác AHM có AHM^=90∘ nên là góc lớn nhất trong tam giác.

Cạnh AM đối diện với góc AHM nên là cạnh lớn nhất ( trong 1 tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất)

⇒AM>AH

Vậy AH < AM

Luyện tập trang 64 Toán lớp 7: Cho hình vuông ABCD có độ dài cạnh bằng 2 cm, M là một điểm trên cạnh BC như Hình 9.10

a) Hãy chỉ ra các đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BC.

b) So sánh hai đoạn thẳng AB và AM.

c) Tìm khoảng cách từ điểm C đến đường thẳng AB.

Luyện tập trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)

Phương pháp giải:

Sử dụng định lí: Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

Lời giải:

a) Đường vuông góc kẻ từ A đến BC là: AB

Đường xiên kẻ từ A đến BC là: AM

b) AB < AM (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.)

c) Vì CB ⊥ AB nên khoảng cách từ C đến AB là độ dài CB =  2 cm

Vận dụng trang 64 Toán lớp 7: Tình huống mở đầu

Bạn Nam tập bơi ở một bể bơi hình chữ nhật, trong đó có ba đường bơi OA, OB, OC. Biết rằng OA vuông góc với cạnh của bể bơi (H.9.8)

Nếu xuất phát từ điểm O và bơi cùng tốc độ, để bơi sang bờ bên kia nhanh nhất thì bạn Nam nên chọn đường bơi nào?

Vận dụng trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)

Phương pháp giải:

Sử dụng định lí: Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

Lời giải:

Trong các đường xiên và đường vuông góc kẻ từ O đến bờ bên kia của bể bơi thì OA là đường vuôn góc nên ngắn nhất (Định lí)

Thử thách nhỏ trang 64 Toán lớp 7: a) Quan sát hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì AM càng lớn lên, tức là nếu HM < HN  thì AM < AN. Hãy chứng minh khẳng định này nhờ quan hệ giữa góc và cạnh đối diện trong tam giác AMN

b) Xét hình vuông ABCD và một điểm M tùy ý nằm trên các cạnh của hình vuông. Hỏi với vị trí nào của M thì AM lớn nhất? Vì sao?

Thử thách nhỏ trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)Phương pháp giải:

Sử dụng định lí: Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.

Lời giải:

+) TH1:

M nằm giữa H và N:

Thử thách nhỏ trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 2)

Vì góc AMN là góc ngoài tại đỉnh M của tam giác AHM nên là góc tù.

Xét tam giác AMN có  là góc tù nên là góc lớn nhất trong tam giác. Cạnh AN đối diện với  nên là cạnh lớn nhất trong tam giác ( định lí)

Vậy AM < AN

+) TH2:

H nằm giữa M và N:

Thử thách nhỏ trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 3)

Lấy điểm M’ trên d sao cho HM’ = HM. Ta được AH là đường trung trực của đoạn thẳng MM’ nên AM = AM’ ( tính chất đường trung trực của đoạn thẳng)

Hơn nữa, AM’ < AN ( theo trường hợp 1)

AM < AN

Vậy AM < AN.

b)

Thử thách nhỏ trang 64 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 4)

Theo câu a, khi M thay đổi trên BC, M càng xa B thì AM càng lớn. Khi M trùng C thì M xa B nhất nên khi đó AM là lớn nhất.

Giải Toán 7 trang 65 Tập 2

Bài tập

Bài 9.6 trang 65 Toán lớp 7: Chiều cao của tam giác ứng với một cạnh của nó có phải là khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đó không?

Phương pháp giải:

Độ dài của đường vuông góc kẻ từ 1 điểm đến 1 đường thẳng là khoảng cách từ điểm đó đến đường thẳng.

Lời giải:

Chiều cao của tam giác ứng với một cạnh là đường vuông góc kẻ từ đỉnh đến cạnh đối diện nên là khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đối diện.

Bài 9.7 trang 65 Toán lớp 7: Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông

a) Đỉnh nào cách đều hai điểm A và C?

b) Đỉnh nào cách đều hai đường thẳng AB và AD?

Phương pháp giải:

a) Tìm đỉnh cách đều hai điểm A và C

b) Tìm đỉnh mà đường vuông góc kẻ từ đỉnh đó xuống hai đường thẳng AB và AD bằng nhau.

Lời giải:

Bài 9.7 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)Vì ABCD là hình vuông nên AB = BC = CD = DA (tính chất)

a) Ta có: +) BA = BC nên đỉnh B cách đều hai điểm A và C

+) DA = DC nên đỉnh D cách đều hai điểm A và C

Vậy đỉnh B và D cách đều hai điểm A và C

b) +)Vì CB = CD nên khoảng cách từ C đến 2 đường thẳng AB và AD bằng nhau. Do đó đỉnh C cách đều 2 đường thẳng AB và AD.

+) Khoảng cách từ A đến AB bằng khoảng cách từ A đến AD ( bằng 0) nên A cách đều hai đường thẳng AB và AD.

Vậy đỉnh C và đỉnh A cách đều hai đường thẳng AB và AD.

Bài 9.8 trang 65 Toán lớp 7: Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C. (H. 9.12)

Bài 9.8 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)

a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M để độ dài AM nhỏ nhất.

b) Chứng minh rằng với mọi điểm M thì AM < AB

Phương pháp giải:

Sử dụng định lí:

+ Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.

Lời giải:

Bài 9.8 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 2)

Kẻ AH   BC.

a) Trong các đường xiên và đường vuông góc kẻ từ A điểm nằm ngoài đường thẳng BC đến đường thẳng BC thì đường vuông góc là đường ngắn nhất nên AM ngắn nhất khi M trùng H hay M là chân đường vuông góc kẻ từ A đến BC.

b) Cách 1:

+) Khi M trùng H thì AH < AB ( đường vuông góc luôn nhỏ hơn đường xiên)

+) Khi M nằm giữa B và H

Bài 9.8 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 3)

Góc AMB là góc ngoài tại đỉnh M của tam giác AHM nên = 90 nên  là góc tù nên là góc lớn nhất trong tam giác ABM

Trong tam giác ABM, cạnh AB đối diện với  lớn nhất nên cạnh AB lớn nhất (định lí)

 AM < AB.

+) Khi M nằm giữa C và H

Bài 9.8 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 4)

Góc AMC là góc ngoài tại đỉnh M của tam giác AHM nên = 90 nên  là góc tù nên là góc lớn nhất trong tam giác ACM

Trong tam giác ACM, cạnh AC đối diện với  lớn nhất nên cạnh AC lớn nhất (định lí)

 AM < AC.

Mà AB = AC (gt)

 AM < AB

Vậy AM < AB

Cách 2:

Theo thử thách nhỏ trang 64, khi M thay đổi trên BC, M càng xa H thì AM càng lớn lên. Tuy nhiên, M nằm giữa B và C nên AM không vượt quá AB. Như vậy, AM < AB

Bài 9.9 trang 65 Toán lớp 7: Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC (M,N không phải là đỉnh của tam giác) (H. 9.13). Chứng minh rằng MN < BC.

Bài 9.9 trang 65 Toán lớp 7 Tập 2 | Kết nối tri thức (ảnh 1)Phương pháp giải:

Sử dụng:

+ Góc tù là góc lớn nhất trong tam giác

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất

Lời giải:

Ta có: Góc NMB là góc ngoài tại đỉnh M của tam giác AMN nên  là góc tù.

Góc BNC là góc ngoài tại đỉnh N của tam giác ABN nên ( định lí)  là góc tù.

Xét tam giác MNB có góc NMB là góc tù nên là góc lớn nhất trong tam giác. Cạnh NB đối diện với góc NMB nên là cạnh lớn nhất trong tam giác. Ta được NM < NB.(1)

Xét tam giác CNB có góc BNC là góc tù nên là góc lớn nhất trong tam giác. Cạnh CB đối diện với góc BNC nên là cạnh lớn nhất trong tam giác. Ta được NB < CB.(2)

Từ (1) và (2)  NM < CB.

Vậy MN < BC.

Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác

Bài 33: Quan hệ giữa ba cạnh của một tam giác

Luyện tập chung trang 70

Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Tìm xác suất sao cho trong hai người đó:a) Cả hai đều là nữ;b) Không có nữ nào;c) Ít nhất một người là nữ;d) Có đúng một người là nữ.

Next post

Cho \(z = 1 + 2i\), tìm mođun của số phức \({\rm{w}} = \left( {1 + i} \right)z\).

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14

Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế

Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23

Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1

Giải SGK Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Kết nối tri thức): Tập hợp các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Kết nối tri thức): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 (Kết nối tri thức): Luyện tập chung trang 14
  4. Giải SGK Toán 7 Bài 3 (Kết nối tri thức): Lũy thừa với số mũ tự nhiên của một số hữu tỉ
  5. Giải SGK Toán 7 Bài 4 (Kết nối tri thức): Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
  6. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 23
  7. Giải SGK Toán 7 (Kết nối tri thức): Bài tập cuối chương 1
  8. Giải SGK Toán 7 Bài 5 (Kết nối tri thức): Làm quen với số thập phân vô hạn tuần hoàn
  9. Giải SGK Toán 7 Bài 6 (Kết nối tri thức): Số vô tỉ. Căn bậc hai số học
  10. Giải SGK Toán 7 Bài 7 (Kết nối tri thức): Tập hợp các số thực
  11. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 37
  12. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 2
  13. Giải SGK Toán 7 Bài 8 (Kết nối tri thức): Góc ở vị trí đặc biệt. Tia phân giác của một góc
  14. Giải SGK Toán 7 Bài 9 (Kết nối tri thức): Hai đường thẳng song song và dấu hiệu nhận biết
  15. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 50
  16. Giải SGK Toán 7 Bài 10 (Kết nối tri thức): Tiên đề Euclid. Tính chất của hai đường thẳng song song
  17. Giải SGK Toán 7 Bài 11(Kết nối tri thức): Định lí và chứng minh định lí
  18. Toán lớp 7 (Kết nối tri thức) Luyện tập chung trang 58
  19. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Bài 12 (Kết nối tri thức): Tổng các góc trong một tam giác
  21. Giải SGK Toán 7 Bài 13 (Kết nối tri thức): Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
  22. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 68
  23. Giải SGK Toán 7 Bài 14 (Kết nối tri thức): Trường hợp bằng nhau thứ hai và thứ ba của tam giác
  24. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 74
  25. Giải SGK Toán 7 Bài 15 (Kết nối tri thức): Các trường hợp bằng nhau của tam giác vuông
  26. Giải SGK Toán 7 Bài 16 (Kết nối tri thức): Tam giác cân. Đường trung trực của đoạn thẳng
  27. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 85
  28. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 4
  29. Giải SGK Toán 7 Bài 17 (Kết nối tri thức): Thu nhập và phân loại dữ liệu
  30. Giải SGK Toán 7 Bài 18 (Kết nối tri thức): Biểu đồ hình quạt tròn
  31. Giải SGK Toán 7 Bài 19 (Kết nối tri thức): Biểu đồ đoạn thẳng
  32. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 106
  33. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 5
  34. Giải SGK Toán 7 Bài 20 (Kết nối tri thức): Tỉ lệ thức
  35. Giải SGK Toán 7 Bài 21 (Kết nối tri thức): Tính chất của dãy tỉ số bằng nhau
  36. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 10
  37. Giải SGK Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận
  38. Giải SGK Toán 7 Bài 23 (Kết nối tri thức): Đại lượng tỉ lệ nghịch
  39. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 19
  40. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 6
  41. Giải SGK Toán 7 Bài 24 (Kết nối tri thức): Biểu thức đại số
  42. Giải SGK Toán 7 Bài 25 (Kết nối tri thức): Đa thức một biến
  43. Giải SGK Toán 7 Bài 26 (Kết nối tri thức): Phép cộng và phép trừ đa thức một biến
  44. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 34
  45. Giải SGK Toán 7 Bài 27 (Kết nối tri thức): Phép nhân đa thức một biến
  46. Giải SGK Toán 7 Bài 28 (Kết nối tri thức): Phép chia đa thức một biến
  47. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 44
  48. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 7
  49. Giải SGK Toán 7 Bài 29 (Kết nối tri thức): Làm quen với biến cố
  50. Giải SGK Toán 7 Bài 30 (Kết nối tri thức): Làm quen với xác suất của biến cố
  51. Giải SGK Toán 7 (Kết nối tri thức) Luyện tập chung trang 56
  52. Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán