Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Toán lớp 9

Bộ 3 đề thi vào lớp 10 môn Toán trường Đại học Tổng hợp năm 2022

By admin 01/10/2023 0

Đề thi vào 10 hệ THPT chuyên 1993-1994 Đại học tổng hợp

Sở Giáo dục và Đào tạo …..

Kì thi tuyển sinh vào 10

Năm học 2022 – 2023

Đề thi môn: Toán

Thời gian làm bài: 120 phút

(không kể thời gian phát đề)

Bài 1: a) GiảI phương trình \[x + \sqrt {x + \frac{1}{2} + \sqrt {x + \frac{1}{4}} }  = 2\].
b) GiảI hệ phương trình : \[\left\{ \begin{array}{l}{x^3} + 2x{y^2} + 12y = 0\\8{y^3} + {x^2} = 12\end{array} \right.\]

Bài 2: Tìm max và min của biểu thức : A = x2y(4 – x – y) khi x và y thay đổi thỏa mãn điều kiện : x ³ 0, y ³ 0, x + y ≤ 6.

Bài 3: Cho hình thoi ABCD. Gọi R, r lần lượt là các bán kính các đường tròn ngoại tiếp các tam giác ABD, ABC và a là độ dài cạnh hình thoi. Chứng minh rằng \[\frac{1}{{{R^2}}} + \frac{1}{{{r^2}}} = \frac{4}{{{a^2}}}\].

Bài 4: Tìm tất cả các số nguyên dương a, b, c đôI một khác nhau sao cho biểu thức \[A = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{{ab}} + \frac{1}{{ac}} + \frac{1}{{bc}}\] nhận giá trị nguyên dương.

Đề thi vào 10 hệ THPT chuyên 1991-1992 Đại học tổng hợp

Bài 5: a) Rút gọn biểu thức \[A = \sqrt[3]{{2\sqrt 3  – 4\sqrt 2 }}.\sqrt[6]{{44 + 16\sqrt 6 }}\].
b) Phân tích biêu thức P = (x – y)5 + (y-z)5 +(z – x )5 thành nhân tử.

Bài 6: a) Cho các số a, b, c, x, y, z thảo mãn các điều kiện \[\left\{ \begin{array}{l}a + b + c = 0\\x + y + z = 0\\\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0\end{array} \right.\] hãy tính giá trị của biểu thức A = xa2 + yb2 + zc2.
b) Cho 4 số a, b, c, d mỗi số đều không âm và nhỏ hơn hoặc bằng 1. Chứng minh rằng
0 ≤ a + b + c + d – ab – bc – cd – da ≤ 2. Khi nào đẳng thức xảy ra dấu bằng.

Bài 7: Cho trước a, d  là các số nguyên dương. Xét các số có dạng :
a, a + d, a + 2d, … , a + nd, …
Chứng minh rằng trong các số đó có ít nhất một số mà 4 chữ số đầu tiên của nó là 1991.

Bài 8: Trong một cuộc hội thảo khoa học có 100 người tham gia. Giả sử mỗi người đều quen biết với ít nhất 67 người. Chứng minh rằng có thể tìm được một nhóm 4 người mà bất kì 2 người trong nhóm đó đều quen biết nhau.

Bài 9: Cho hình vuông ABCD. Lấy điểm M nằm trong hình vuông sao cho Ð MAB = Ð MBA = 150 . Chứng minh rằng   D MCD  đều.

Bài 10: Hãy xây dựng một tập hợp gồm 8 điểm có tính chất : Đường trung trực của đoạn thẳng nối hai điểm bất kì luôn đI qua ít nhất hai điểm của tập hợp đó.

 

Đề thi vào 10 hệ THPT chuyên toán 1992 Đại học tổng hợp

Sở Giáo dục và Đào tạo …..

Kì thi tuyển sinh vào 10

Năm học 2022 – 2023

Đề thi môn: Toán

Thời gian làm bài: 120 phút

(không kể thời gian phát đề)

Bài 1: a) Giải phương trình (1 + x)4 = 2(1 + x4).
b) Giải hệ phương trình  \[\left\{ \begin{array}{l}{x^2} + xy + {y^2} = 7\\{y^2} + yz + {z^2} = 28\\{z^2} + xz + {x^2} = 7\end{array} \right.\]

Bài 2: a) Phân tích đa thức x5 – 5x – 4 thành tích của một đa thức bậc hai và một đa thức bậc ba với hệ số nguyên.
b) Áp dụng kết quả trên để rút gọn biểu thức \[P = \frac{2}{{\sqrt {4 – 3\sqrt[4]{5} + 2\sqrt 5  – \sqrt[4]{{125}}} }}\].

Bài 3: Cho D ABC đều. Chứng minh rằng  với mọi điểm M ta luôn có MA ≤ MB + MC.

Bài 4: Cho Ð xOy cố định. Hai điểm A, B khác O lần lượt chạy trên Ox và Oy tương ứng sao cho OA.OB = 3.OA – 2.OB. Chứng minh rằng  đường thẳng AB luôn đI qua một điểm cố định.

Bài 5 : Cho hai số nguyên dương m, n thỏa mãn m > n và m không chia hết cho n. Biết rằng số dư khi chia m cho n bằng số dư khi chia m + n cho m – n. Hãy tính tỷ số \[\frac{m}{n}\].

 

Đề thi vào 10 hệ THPT chuyên 1991-1992 Đại học tổng hợp

Sở Giáo dục và Đào tạo …..

Kì thi tuyển sinh vào 10

Năm học 2022 – 2023

Đề thi môn: Toán

Thời gian làm bài: 120 phút

(không kể thời gian phát đề)

Bài 1: a) Rút gọn biểu thức \[A = \sqrt[3]{{2\sqrt 3  – 4\sqrt 2 }}.\sqrt[6]{{44 + 16\sqrt 6 }}\].
b) Phân tích biêu thức P = (x – y)5 + (y-z)5 +(z – x )5 thành nhân tử.

Bài 2: a) Cho các số a, b, c, x, y, z thảo mãn các điều kiện \[\left\{ \begin{array}{l}a + b + c = 0\\x + y + z = 0\\\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0\end{array} \right.\] hãy tính giá trị của biểu thức A = xa2 + yb2 + zc2.
b) Cho 4 số a, b, c, d mỗi số đều không âm và nhỏ hơn hoặc bằng 1. Chứng minh rằng
0 ≤ a + b + c + d – ab – bc – cd – da ≤ 2. Khi nào đẳng thức xảy ra dấu bằng.

Bài 3: Cho trước a, d  là các số nguyên dương. Xét các số có dạng :
a, a + d, a + 2d, … , a + nd, …
Chứng minh rằng trong các số đó có ít nhất một số mà 4 chữ số đầu tiên của nó là 1991.

Bài 4: Trong một cuộc hội thảo khoa học có 100 người tham gia. Giả sử mỗi người đều quen biết với ít nhất 67 người. Chứng minh rằng có thể tìm được một nhóm 4 người mà bất kì 2 người trong nhóm đó đều quen biết nhau.

Bài 5: Cho hình vuông ABCD. Lấy điểm M nằm trong hình vuông sao cho Ð MAB = Ð MBA = 150 . Chứng minh rằng   D MCD  đều.

Bài 6: Hãy xây dựng một tập hợp gồm 8 điểm có tính chất : Đường trung trực của đoạn thẳng nối hai điểm bất kì luôn đI qua ít nhất hai điểm của tập hợp đó.

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bộ 8 đề thi vào lớp 10 môn Toán năm 2022 – THPT chuyên Khoa học tự nhiên

Next post

Bộ 8 đề thi vào lớp 10 môn Toán năm 2022

Bài liên quan:

50 Bài tập Căn bậc hai (có đáp án)- Toán 9

Giáo án Căn bậc hai (2023) mới nhất – Toán 9

Giáo án Toán 9 bài 1: Căn bậc hai mới nhất

30 câu Trắc nghiệm Căn bậc hai có đáp án 2023 – Toán lớp 9

Lý thuyết Căn bậc hai (mới 2023 + bài tập) hay, chi tiết – Toán 9

SBT Toán 9 Bài 1: Căn bậc hai | Giải SBT Toán lớp 9

Giải Toán 9 Bài 1: Căn bậc hai

Giáo án Căn thức bậc hai và hằng đẳng thức mới nhất (2023) – Toán 9

Leave a Comment Hủy

Mục lục

  1. 50 Bài tập Căn bậc hai (có đáp án)- Toán 9
  2. Giáo án Căn bậc hai (2023) mới nhất – Toán 9
  3. Giáo án Toán 9 bài 1: Căn bậc hai mới nhất
  4. 30 câu Trắc nghiệm Căn bậc hai có đáp án 2023 – Toán lớp 9
  5. Lý thuyết Căn bậc hai (mới 2023 + bài tập) hay, chi tiết – Toán 9
  6. SBT Toán 9 Bài 1: Căn bậc hai | Giải SBT Toán lớp 9
  7. Giải Toán 9 Bài 1: Căn bậc hai
  8. Giáo án Căn thức bậc hai và hằng đẳng thức mới nhất (2023) – Toán 9
  9. Giáo án Luyện tập Căn thức bậc hai và hằng đẳng thức (2023) – Toán 9
  10. Giáo án Toán 9 bài 2: Căn thức bậc hai và hằng đẳng thức mới nhất
  11. 30 câu Trắc nghiệm Căn thức bậc hai và hằng đẳng thức có đáp án 2023 – Toán lớp 9
  12. 50 Bài tập Căn thức bậc hai và hằng đẳng thức (có đáp án) – Toán 9
  13. Lý thuyết Căn thức bậc hai và hằng đẳng thức (mới 2023 + bài tập) hay, chi tiết – Toán 9
  14. SBT Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức | Giải SBT Toán lớp 9
  15. Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức
  16. Giáo án Toán 9 bài 3: Luyện tập mới nhất
  17. Giáo án Liên hệ giữa phép nhân và phép khai phương (2023) mới nhất – Toán 9
  18. Giáo án Luyện tập Liên hệ giữa phép nhân và phép khai phương (2023) – Toán 9
  19. Giáo án Liên hệ giữa phép nhân và phép khai phương (2023) mới nhất – Toán 9
  20. 30 câu Trắc nghiệm Liên hệ giữa phép nhân và phép khai phương có đáp án 2023 – Toán lớp 9
  21. 50 Bài tập Liên hệ giữa phép nhân và phép khai phương (có đáp án)- Toán 9
  22. Lý thuyết Liên hệ giữa phép nhân và phép khai phương (mới 2023 + bài tập) hay, chi tiết – Toán 9
  23. SBT Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương | Giải SBT Toán lớp 9
  24. Giải Toán 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương
  25. Giáo án Luyện tập Liên hệ giữa phép chia và phép khai phương (2023) – Toán 9
  26. Giáo án Liên hệ giữa phép chia và phép khai phương (2023) mới nhất – Toán 9
  27. Giáo án Toán 9 bài 4: Luyện tập mới nhất
  28. Giáo án Toán 9 bài 4: Liên hệ giữa phép chia và phép khai phương mới nhất
  29. 30 câu Trắc nghiệm Liên hệ giữa phép chia và phép khai phương có đáp án 2023 – Toán lớp 9
  30. 50 Bài tập Liên hệ giữa phép chia và phép khai phương (có đáp án)- Toán 9
  31. Lý thuyết Liên hệ giữa phép chia và phép khai phương (mới 2023 + bài tập) hay, chi tiết – Toán 9
  32. SBT Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương | Giải SBT Toán lớp 9
  33. Giải Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương
  34. 50 Bài tập Bảng căn bậc hai (có đáp án)- Toán 9
  35. Lý thuyết Bảng căn bậc hai (mới 2023 + bài tập) hay, chi tiết – Toán 9
  36. SBT Toán 9 Bài 5: Bảng căn bậc hai | Giải SBT Toán lớp 9
  37. Giải Toán 9 Bài 5: Bảng căn bậc hai
  38. Giáo án Toán 9 bài 6: Luyện tập mới nhất
  39. Giáo án Đại số 9 chương 1 bài 6: Biến đổi đơn giản biểu thức chứa căn bậc hai mới nhất
  40. Giáo án Toán 9 bài 6: Luyện tập mới nhất
  41. Giáo án Toán 9 bài 6: Luyện tập mới nhất
  42. Giáo án Biến đổi đơn giản biểu thức chứa căn thức bậc hai (2023) mới nhất – Toán 9
  43. 30 câu Trắc nghiệm Biến đổi đơn giản biểu thức chứa căn thức bậc hai có đáp án 2023 – Toán lớp 9
  44. 50 Bài tập Biến đổi đơn giản biểu thức chứa căn bậc hai (có đáp án)- Toán 9
  45. Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai (mới 2023 + bài tập) hay, chi tiết – Toán 9
  46. SBT Toán 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai | Giải SBT Toán lớp 9
  47. Giải Toán 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
  48. 50 Bài tập Biến đổi đơn giản biểu thức chứa căn bậc hai (tiếp) (có đáp án)- Toán 9
  49. Giáo án Biến đổi đơn giản biểu thức chứa căn bậc hai (tiếp) (2023) mới nhất – Toán 9
  50. Giáo án Đại số 9 chương 1 bài 7: Biến đổi đơn giản biểu thức chứa căn bậc hai (tiếp) mới nhất
  51. Giáo án Đại số 9 chương 1 bài 7: Biến đổi đơn giản biểu thức chứa căn bậc hai (tiếp theo) mới nhất
  52. 30 câu Trắc nghiệm Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp) có đáp án 2023 – Toán lớp 9

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán