Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 6 – Cánh diều

Sách bài tập Toán 6 Bài 8 (Cánh diều): Dấu hiệu chia hết cho 2, cho 5

By admin 17/04/2023 0

Giải SBT Toán lớp 6 Bài 8: Dấu hiệu chia hết cho 2, cho 5

Bài 66 trang 24 sách bài tập Toán lớp 6 Tập 1: Cho các số 23; 45; 714; 815; 2 300; 2 369; 13 110; 25 555; 4 123 458. Trong các số đó:

a) Số nào chia hết cho 2?

b) Số nào chia hết cho 5?

c) Số nào chia hết cho 2, nhưng không chia hết cho 5?

d) Số nào chia hết cho 5, nhưng không chia hết cho 2?

Lời giải:

a) Các số có tận cùng là các một trong các chữ số: 0; 2; 4; 6; 8 là các số chia hết cho 2.

Trong các số đã cho các số chia hết cho 2 là: 714; 2 300; 13 110; 4 123 458.

b) Các số có chữ số tận cùng là 0 hoặc 5 thì các số đó chia hết cho 5.

Trong các số đã cho các số chia hết cho 5 là: 45; 815; 2 300; 13 110; 25 555.

c) Số chia hết cho 2 nhưng không chia hết cho 5 là: 714; 4 123 458.

d) Số chia hết cho 5 nhưng không chia hết cho 2 là: 45; 815; 25 555.

Bài 67 trang 24 sách bài tập Toán lớp 6 Tập 1: Tìm chữ số x để số Bài 67 trang 24 sách bài tập Toán lớp 6 Tập 1 thỏa mãn mỗi điều kiện sau:

a) Chia hết cho 2;

b) Chia hết cho 5;

c) Chia hết cho cả 2 và 5.

Lời giải:

a) Số Bài 67 trang 24 sách bài tập Toán lớp 6 Tập 1 có chữ số tận cùng là 0 nên số này luôn chia hết cho 2.

Do đó x là chữ số nên có thể nhận tất cả các giá trị {0;1;2;3;4;5;6;7;8;9}.

Vậy x ∈ {0;1;2;3;4;5;6;7;8;9}.

b) Số Bài 67 trang 24 sách bài tập Toán lớp 6 Tập 1 có chữ số tận cùng là 0 nên số này luôn chia hết cho 5.

Do đó x là chữ số nên có thể nhận tất cả các giá trị {0;1;2;3;4;5;6;7;8;9}.

Vậy x ∈ {0;1;2;3;4;5;6;7;8;9}.

c) Số Bài 67 trang 24 sách bài tập Toán lớp 6 Tập 1 có chữ số tận cùng là 0 nên số này luôn chia hết cho 2 và 5.

Do đó x là chữ số nên có thể nhận tất cả các giá trị {0;1;2;3;4;5;6;7;8;9}.

Vậy x ∈ {0;1;2;3;4;5;6;7;8;9}.

Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1: Tìm chữ số x để số Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 thỏa mãn mỗi điều kiện sau:

a) Chia hết cho 2; 

b) Chia hết cho 5.

Lời giải:

a) Vì Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 có chữ số tận cùng là 7 nên Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 không chia hết cho 2.

Do đó không tồn tại giá trị nào của chữ số x để số Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 chia hết cho 2.

Vậy không tồn tại x để Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 chia hết cho 2.

b) Vì Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 có chữ số tận cùng là 7 nên Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 không chia hết cho 5.

Do đó không tồn tại giá trị nào của chữ số x để số Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 chia hết cho 5.

Vậy không tồn tại x để Bài 68 trang 24 sách bài tập Toán lớp 6 Tập 1 chia hết cho 5.

Bài 69 trang 24 sách bài tập Toán lớp 6 Tập 1: Tìm chữ số x để số Bài 69 trang 24 sách bài tập Toán lớp 6 Tập 1 thỏa mãn mỗi điều kiện sau:

a) Chia hết cho 4;

b) Chia hết cho 8.

Lời giải:

a) Ta có: Bài 69 trang 24 sách bài tập Toán lớp 6 Tập 1= 234508 + 10.x.

Vì 234 508 = 4.58 627 nên chia hết cho 4.

Để 234 508 + 10.x chia hết cho 4 thì 10.x phải chia hết cho 4 khi đó x ∈ {0;2;4;6;8}.

Vậy x ∈ {0;2;4;6;8}.

b) Ta có:  Bài 69 trang 24 sách bài tập Toán lớp 6 Tập 1= 234508 + 10.x = 234504 + 4 + 10.x.

Vì 234 504 = 8.29 313 nên chia hết cho 8.

Để 234 504 + 4 + 10x chia hết cho 8 thì 4 + 10x chia hết cho 8 khi đó x ∈ {2;6}.

Vậy x ∈ {2;6}.

Bài 70 trang 24 sách bài tập Toán lớp 6 Tập 1: Từ các chữ số 0; 5; 7, hãy viết tất cả các số có ba chữ số khác nhau. Sao cho:

a) Các số đó chia hết cho 2;

b) Các số đó chia hết cho 5;

c) Các số đó chia hết cho 5, nhưng không chia hết cho 2;

d) Các số đó chia hết cho cả 2 và 5.

Lời giải:

a) Các số chia hết cho 2 có tận cùng là 0; 2; 4; 6; 8 nên số chia hết cho 2 tạo bởi 3 chữ số 0; 5; 7 là: 570; 750.

b) Các số chia hết cho 5 có tận cùng là 0 hoặc 5 nên số chia hết cho 5 tạo bởi 3 chữ số 0; 5; 7 là: 570; 750; 705.

c) Các số chia hết cho 5 nhưng không chia hết cho 2 là: 705.

d) Các số chia hết cho cả 2 và 5 là: 570; 750.

Bài 71 trang 25 sách bài tập Toán lớp 6 Tập 1: Không tính giá trị biểu thức, hãy giải thích tại sao mỗi biểu thức sau chia hết cho 2:

a) A = 1 234 + 43 312 + 5 436 + 10 988;

b) B = 2 335 + 983 333 + 3 142 311 + 5 437;

c) C = 11 + 22 + 33 + … + 88 + 99 + 2 021;

d) D = 8.51.633.4 445 – 777.888 + 2 020.

Lời giải:

a) Vì 1 234 có chữ số tận cùng là 4 nên chia hết cho 2;

43 312 có chữ số tận cùng là 2 nên chia hết cho 2;

5 436 có chữ số tận cùng là 6 nên chia hết cho 2;

10 988 có chữ số tận cùng là 8 nên chia hết cho 2.

Do đó 1 234 + 43 312 + 5 436 + 10 988 chia hết cho 2.

Vậy A = 1 234 + 43 312 + 5 436 + 10 988 chia hết cho 2.

b) Vì 2 335; 983 333; 3 142 311; 5 437 là các số lẻ nên tổng của 2 335 + 983 333 + 3 142 311 + 5 437 là số chẵn nên chia hết cho 2.

Vậy B = 2 335 + 983 333 + 3 142 311 + 5 437 chia hết cho 2.

c) 11 + 22 + 33 + … + 88 + 99 + 2 021

Vì 11; 33; 55; 77; 99; 2 021 là các số lẻ nên 11 + 33 + 55 + 77 + 99 + 2 021 là một chẵn nên chia hết cho 2.

Mà các số 22; 44; 66; 88 đều là các số chẵn nên chia hết cho 2.

d) Vì 8 chia hết cho 2 nên 8.51.633.4 445 chia hết cho 2; 888 chia hết cho 2 nên 777.888 chia hết cho 2 và 2 020 chia hết cho 2 nên 8.51.633.4 445 – 777.888 + 2 020 chia hết cho 2.

Vậy D = 8.51.633.4 445 – 777.888 + 2 020 chia hết cho 2.

Bài 72 trang 25 sách bài tập Toán lớp 6 Tập 1: Tìm số tự nhiên có ba chữ số giống nhau, biết rằng số đó không chia hết cho 2 nhưng chia hết cho 5.

Lời giải:

Các số chia hết cho 5 có chữ số tận cùng là 0 hoặc 5.

Mà số cần tìm không chia hết cho 2 nên chữ số tận cùng là 5.

Số cần tìm là số có ba chữ số giống nhau nên số đó là: 555.

Vậy số tự nhiên có ba chữ số cần tìm là: 555.

Bài 73 trang 25 sách bài tập Toán lớp 6 Tập 1:

a) Có bao nhiêu số có hai chữ số chia cho 5 dư 4?

b) Có bao nhiêu số có ba chữ số chia cho 2 và cho 5 có cùng số dư?

c) Từ 1 đến 555 có bao nhiêu số chia hết cho 2?

d) Từ 500 đến 1 000 có bao nhiêu số chia hết cho 5?

Lời giải:

a) Các số có hai chữ số chia 5 dư 4 là: 14; 19; 24; 29; 34; 39; 44; …; 94; 99.

Số các số có hai chữ số chia 5 dư 4 là: (99 – 14):5 + 1 = 18.

Vậy có 18 số có hai chữ số chia cho 5 dư 4.

b) Một số chia cho 2 sẽ có số dư là 0; 1.

Một số chia cho 5 sẽ có số dư là: 0; 1; 2; 3; 4.

Do đó, một số chia cho 2 và cho 5 có cùng số dư thì số đó phải chia hết cho cả 2 và 5 hoặc cùng chia cho 2 và cho 5 dư 1.

Trường hợp 1: Các số có ba chữ số cùng chia hết cho 2 và cho 5 là: 100; 110; 120; …; 990.

Số các số có ba chữ số cùng chia hết cho 2 và 5 là: (990 – 100):10 + 1 = 90 số.

Trường hợp 2: Các số có ba chữ số cùng chia cho 2 và cho 5 có số dư là 1 là: 101; 111; 121; …; 991.

Số các số có ba chữ số cùng chia cho 2 và cho 5 dư 1 là: (991 – 101):10 + 1 = 90 số.

Vậy có tất cả 90 + 90 = 180 số có ba chữ số chia cho 2 và cho 5 có cùng số dư.

c) Các số chia hết cho 2 từ 1 đến 555 là: 2; 4; 6; …; 554.

Số các số nằm trong khoảng từ 1 đến 555 chia hết cho 2 là: (554 – 2):2 + 1 = 277 số.

Vậy có 277 số trong các số từ 1 đến 555 chia hết cho 2.

d) Các số từ 500 đến 1 000 chia hết cho 5 là: 500; 505; 510; …; 1000.

Số các số nằm từ 500 đến 1 000 chia hết cho 5 là: (1 000 – 500):5 + 1 = 101 số.

Vậy có tất cả 101 số từ 500 đến 1 000 chia hết cho 5.

Bài 74 trang 25 sách bài tập Toán lớp 6 Tập 1: Một cửa hàng mĩ phẩm miễn thuế ở sân bay có khuyên mãi như sau: Khách cứ mua 10 hộp mĩ phẩm thì được tặng một hộp. Mỗi hộp có giá 53 USD. Công ty A mua 48 hộp mĩ phẩm ở cửa hàng đó. Hỏi số USD công ty phải trả để mua 48 mĩ phẩm trên có chia hết cho 5 không? Vì sao?

Lời giải:

Ta có 48 = 4.10 + 8.

Vì mua 10 hộp được tặng 1 hộp nên trong 40 hộp công ty A mua sẽ được tặng 4 hộp mĩ phẩm nữa nên công ty phải trả tiền cho 44 hộp mĩ phẩm.

Công ty phải trả số tiền để mua 48 hộp mĩ phẩm trên là: 44.53 = 2 332 (USD).

Mà 2 332 có chữ số tận cùng là 2 nên không chia hết cho 5.

Bài 75 trang 25 sách bài tập Toán lớp 6 Tập 1: Chứng tỏ rằng:

a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;

b) 1111 + 2222 + 3333 + 4444 + 5555 không chia hết cho 2;

c) 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.

Lời giải:

a) Tổng của hai số lẻ bất kì là một số chẵn nên tổng của 2020 số lẻ bất kì là một số chẵn nên chia hết cho 2.

b) Ta có 11 là số lẻ nên 1111 là số lẻ;

33 là số lẻ nên 3333 là số lẻ;

55 là số lẻ nên 5555 là số lẻ;

Khi đó: 1111 + 3333 + 5555 là số lẻ.

Mặt khác 2222; 4444 là các số chẵn nên 2222 + 4444 là số chẵn.

Vậy 1111 + 2222 + 3333 + 4444 + 5555 là số lẻ nên không chia hết cho 2.

c) Xét 2 + 22 + 23 + … + 259 + 260 

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (257 + 258 + 259 + 260)

= 2(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + … + 257.(1 + 2 + 22 + 23) 

= 2.15 + 25.15 + … + 257.15

= 15.(2 + 25 + … + 257)

Vì 155 nên 15.(2 + 25 + … + 257)5 mà 561 cũng chia hết cho 5.

Nên 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.

Vậy 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.

Bài 76 trang 25 sách bài tập Toán lớp 6 Tập 1:

Bạn Duyên sử dụng các khối lập phương để xếp hình. Các hình bạn Duyên xếp được qua các lần được biểu diễn như dưới đây:

Hỏi số khối lập phương bạn Duyên dùng cho lần xếp hình thứ 100 có chia hết cho cả 2 và 5 hay không?

Lời giải:

Qua các lần xếp hình ta thấy số khối lập phương được xếp ở hàng 1 bằng đúng lần đó và các hàng trên giảm dần về 1.

Do đó hàng 1 của lần xếp hình thứ 100 là 100 khối lập phương, hàng tiếp theo là 99 khối, hàng tiếp theo là 98, … đến hàng cuối cùng sẽ có 1 khối lập phương.

Số khối lập phương bạn Duyên dùng cho lần xếp hình thứ 100 là:

100 + 99 + 98 + … + 2 + 1

= (100 + 1) + (99 + 2) + (98 + 3) + … + (50 + 51)

= 101 + 101 + 101 + … + 101

= 101.60

= 5 050.

Ta thấy 5 050 có tận cùng là chữ số 0 nên 5 050 chia hết cho 2 và 5.

Vậy có 5 050 khối lập phương được dùng cho lần xếp hình thứ 100 của bạn Duyên va chia hết cho 2 và 5.

 

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Quan hệ chia hết. Tính chất chia hết (Cánh diều 2023) hay, chi tiết | Toán lớp 6

Next post

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = \cos x – 2x\).

Bài liên quan:

Sách bài tập Toán 6 Bài 1 (Cánh diều): Tập hợp

Sách bài tập Toán 6 Bài 2 (Cánh diều): Tập hợp các số tự nhiên

Sách bài tập Toán 6 Bài 3 (Cánh diều): Phép cộng, phép trừ các số tự nhiên

Sách bài tập Toán 6 Bài 4 (Cánh diều): Phép nhân, phép chia số tự nhiên

Sách bài tập Toán 6 Bài 5 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên

Sách bài tập Toán 6 Bài 6 (Cánh diều): Thứ tự thực hiện các phép tính

Sách bài tập Toán 6 Bài 7 (Cánh diều): Quan hệ chia hết – Tính chất chia hết

Sách bài tập Toán 6 Bài 9 (Cánh diều): Dấu hiệu chia hết cho 3, cho 9

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 6 Bài 1 (Cánh diều): Tập hợp
  2. Sách bài tập Toán 6 Bài 2 (Cánh diều): Tập hợp các số tự nhiên
  3. Sách bài tập Toán 6 Bài 3 (Cánh diều): Phép cộng, phép trừ các số tự nhiên
  4. Sách bài tập Toán 6 Bài 4 (Cánh diều): Phép nhân, phép chia số tự nhiên
  5. Sách bài tập Toán 6 Bài 5 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên
  6. Sách bài tập Toán 6 Bài 6 (Cánh diều): Thứ tự thực hiện các phép tính
  7. Sách bài tập Toán 6 Bài 7 (Cánh diều): Quan hệ chia hết – Tính chất chia hết
  8. Sách bài tập Toán 6 Bài 9 (Cánh diều): Dấu hiệu chia hết cho 3, cho 9
  9. Sách bài tập Toán 6 Bài 10 (Cánh diều): Số nguyên tố – Hợp số
  10. Sách bài tập Toán 6 Bài 11 (Cánh diều): Phân tích một số ra thừa số nguyên tố
  11. Sách bài tập Toán 6 Bài 12 (Cánh diều): Ước chung và ước chung lớn nhất
  12. Sách bài tập Toán 6 Bài 13 (Cánh diều): Bội chung và bội chung nhỏ nhất
  13. Sách bài tập Toán 6 (Cánh diều) Bài ôn tập cuối chương 1
  14. Sách bài tập Toán 6 Bài 1 (Cánh diều): Số nguyên âm
  15. Sách bài tập Toán 6 Bài 2 (Cánh diều): Tập hợp các số nguyên
  16. Sách bài tập Toán 6 Bài 3 (Cánh diều): Phép cộng các số nguyên
  17. Sách bài tập Toán 6 Bài 4 (Cánh diều): Phép trừ số nguyên. Quy tắc dấu ngoặc
  18. Sách bài tập Toán 6 Bài 5 (Cánh diều): Phép nhân các số nguyên
  19. Sách bài tập Toán 6 Bài 6 (Cánh diều) Phép chia hết hai số nguyên – Quan hệ chia hết trong tập hợp số nguyên
  20. Sách bài tập Toán 6 (Cánh diều) Bài ôn tập cuối chương 2
  21. Sách bài tập Toán 6 Bài 1 (Cánh diều): Tam giác đều. Hình vuông. Lục giác đều
  22. Sách bài tập Toán 6 Bài 2 (Cánh diều): Hình chữ nhật. Hình thoi
  23. Sách bài tập Toán 6 Bài 3 (Cánh diều): Hình bình hành
  24. Sách bài tập Toán 6 Bài 4 (Cánh diều): Hình thang cân
  25. Sách bài tập Toán 6 Bài 5 (Cánh diều): Hình có trục đối xứng
  26. Sách bài tập Toán 6 Bài 6 (Cánh diều): Hình có tâm đối xứng
  27. Sách bài tập Toán 6 (Cánh diều) Bài tập cuối chương 3
  28. Chương 4. Một số yếu tố thống kê và xác suất
  29. Sách bài tập Toán 6 Bài 1 (Cánh diều): Thu thập, tổ chức, biểu diễn, phân tích và xử lý dữ liệu
  30. Sách bài tập Toán 6 Bài 2 (Cánh diều): Biểu đồ cột kép
  31. Sách bài tập Toán 6 Bài 3 (Cánh diều): Mô hình xác suất trong một số trò chơi và thí nghiệm đơn giản
  32. Sách bài tập Toán 6 Bài 4 (Cánh diều): Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản
  33. Sách bài tập Toán 6 (Cánh diều): Bài tập cuối chương 4 trang 19, 20, 21, 22
  34. Chương 5: Phân số và số thập phân
  35. Sách bài tập Toán 6 Bài 1 (Cánh diều): Phân số với tử và mẫu là số nguyên
  36. Sách bài tập Toán 6 Bài 2 (Cánh diều): So sánh các phân số. Hỗn số dương
  37. Sách bài tập Toán 6 Bài 3 (Cánh diều): Phép cộng, phép trừ phân số
  38. Sách bài tập Toán 6 Bài 4 (Cánh diều): Phép nhân, phép chia phân số
  39. Sách bài tập Toán 6 Bài 5 (Cánh diều): Số thập phân
  40. Sách bài tập Toán 6 Bài 6 (Cánh diều): Phép cộng, phép trừ số thập phân
  41. Sách bài tập Toán 6 Bài 7 (Cánh diều): Phép nhân, phép chia số thập phân
  42. Sách bài tập Toán 6 Bài 8 (Cánh diều): Ước lượng và làm tròn số
  43. Sách bài tập Toán 6 Bài 9 (Cánh diều): Tỉ số. Tỉ số phần trăm
  44. Sách bài tập Toán 6 Bài 10 (Cánh diều): Hai bài toán về phân số
  45. Chương 6: Hình học phẳng
  46. Sách bài tập Toán 6 Bài 1 (Cánh diều): Điểm. Đường thẳng
  47. Sách bài tập Toán 6 Bài 2 (Cánh diều): Hai đường thẳng cắt nhau. Hai đường thẳng song song
  48. Sách bài tập Toán 6 Bài 3 (Cánh diều): Đoạn thẳng
  49. Sách bài tập Toán 6 Bài 4 (Cánh diều): Tia
  50. Sách bài tập Toán 6 Bài 5 (Cánh diều): Góc
  51. Sách bài tập Toán 6 (Cánh diều): Bài tập cuối chương 6 trang 101, 102

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán