Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài tập cuối chương 3

Giải trang 64 Tập 1

Bài 1 trang 64 Sách bài tập Toán 7 Tập 1: Điền vào chỗ chấm. Hình hộp chữ nhật (hình lập phương) có:

……. cạnh; ……. mặt; ……. đỉnh; ………. đường chéo; mỗi đỉnh có ……. góc.

Lời giải

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Ta điền được như sau:

Hình hộp chữ nhật (hình lập phương) có:

12 cạnh; 6 mặt; 8 đỉnh; 4 đường chéo; mỗi đỉnh có 3 góc.

Bài 2 trang 64 Sách bài tập Toán 7 Tập 1: Cho hình hộp chữ nhật ABCD.EFGH.

a) Hãy nêu các mặt chứa cạnh EF.

b) Cạnh GH bằng cách cạnh nào?

c) Vẽ đường chéo xuất phát từ đỉnh E, G.

Lời giải

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Quan sát hình hộp chứ nhật ABCD.EFGH, ta có:

a) Các mặt chứa cạnh EF là: mặt ABFE, mặt EFGH.

b) Các cạnh bằng cạnh GH là: EF, CD, AB (ta có thể viết GH = EF = CD = AB).

c) Đường chéo xuất phát từ đỉnh E là EC, đường chéo xuất phát từ đỉnh G là GA.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Bài 3 trang 64 Sách bài tập Toán 7 Tập 1: Bạn Nam dự định dùng thanh sắt cắt ra để làm một cái khung hình lập phương cạnh 30 cm. Hỏi thanh sắt dài 3,5 m có đủ để làm cái khung không?

Lời giải

Hình lập phương có 12 cạnh bằng nhau, mỗi cạnh 30 cm.

Do đó độ dài tất cả các cạnh là: 12 . 30 = 360 (cm).

Đổi 360 cm = 3,6 m.

Mà 3,5 m < 3,6 m.

Vậy thanh sắt không đủ dài để làm khung.

Bài 4 trang 64 Sách bài tập Toán 7 Tập 1: Người ta cần làm một chiếc hộp hình hộp chữ nhật có kích thước 2 cm, 3 cm và 5 cm.

a) Hãy chỉ ra hai cách cắt tấm bìa để gấp thành hình hộp trên.

b) Hãy tính diện tích của tấm bìa sau khi cắt trong mỗi trường hợp.

Lời giải

a)

Cách 1: Trên tấm bìa, vẽ 2 hình chữ nhật với các kích thước như hình dưới, rồi gấp theo các đường nét đứt ta được hình hộp chữ nhật thỏa mãn.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Cách 2: Trên tấm bìa, vẽ 2 hình chữ nhật với các kích thước như hình dưới, rồi gấp theo các đường nét đứt ta được hình hộp chữ nhật thảo mãn.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

b) Diện tích các tấm bìa sau khi cắt ở 2 cách trên đều bằng diện tích toàn phần của hình hộp chữ nhật nên diện tích tấm bìa sau khi cắt ở Cách 1 bằng diện tích tấm bìa sau khi cắt ở Cách 2 và là: S = 2 . (2 . 3 + 2 . 5 + 3 . 5) = 62 (cm2).

Bài 5 trang 64 Sách bài tập Toán 7 Tập 1:Từ một tấm bìa hình chữ nhật, hãy chỉ ra hai cách cắt và gấp để tạo thành một hình lăng trụ đứng có đáy là tam giác đều cạnh 3 cm và chiều cao 2 cm.

Lời giải

Cách 1: Trên tấm bìa, ta vẽ hai hình tam giác đều cạnh 3 cm và 3 hình chữ nhật bằng nhau với các kích thước như trên hình vẽ rồi gấp theo các đường nét đứt ta được hình lăng trụ đứng thỏa mãn yêu cầu.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Cách 2: Trên tấm bìa, ta vẽ hai hình tam giác đều cạnh 3 cm và 3 hình chữ nhật bằng nhau với các kích thước như trên hình vẽ rồi gấp theo các đường nét đứt ta được hình lăng trụ đứng thỏa mãn yêu cầu.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Bài 6 trang 64 Sách bài tập Toán 7 Tập 1: Trong bốn tấm bìa dưới đây, tấm nào không thể gấp thành hình lăng trụ đứng tam giác?

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Lời giải

– Theo Bài 5, ta thấy tấm bìa ở Hình 1a) và Hình 1d) có thể gấp được thành hình lăng trụ đứng tam giác.

– Ta gấp tấm bìa Hình 1b) theo các đường nét đứt như hình dưới đây, ta được hình lăng trụ đứng tam giác.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

– Ở tấm bìa Hình 1c), hai phần tam giác ở cùng phía, do đó ta không thể gấp để tạo thành 2 đáy của lăng trụ đứng tam giác (do hai đáy của hình lăng trụ đứng tam giác phải song song với nhau).

Vậy tấm bìa Hình 1c) không thể gấp được thành hình lăng trụ đứng tam giác.

Giải trang 65 Tập 1

Bài 7 trang 65 Sách bài tập Toán 7 Tập 1: Một khối kim loại có dạng hình lăng trụ đứng đáy tam giác vuông có kích thước hai cạnh góc vuông là 3 cm, 4 cm, cạnh huyền 5 cm. Người ta khoét một lỗ hình lăng trụ đứng đáy tam giác vuông hai cạnh góc vuông có kích thước là 2 cm, 1,5 cm, cạnh huyền 2,5 cm (Hình 2). Tính thể tích của khối kim loại (không tính cái lỗ).

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Lời giải

+ Khối kim loại có dạng hình lăng trụ đứng tam giác với đáy là tam giác vuông có kích thước hai cạnh góc vuông là 3 cm, 4 cm và chiều cao của lăng trụ là h = 4,5 cm.

Khi đó, thể tích của khối kim loại (bao gồm cái lỗ) là:

V = Sđ . h = (12. 3 . 4) . 4,5 = 27 (cm3).

+ Cái lỗ khoét có dạng hình lăng trụ đứng tam giác với đáy là tam giác vuông có kích thước hai cạnh góc vuông là 2 cm, 1,5 cm và chiều cao của lăng trụ là h = 4,5 cm (bằng chiều cao của khối lăng trụ kim loại).

Khi đó, thể tích của cái lỗ là:

v = Sđn . h = (12 . 2 . 1,5) . 4,5 = 6,75 (cm3).

Vậy thể tích của khối kim loại (không tính cái lỗ) là: 27 – 6,75 = 20,25 (cm3).

Bài 8 trang 65 Sách bài tập Toán 7 Tập 1: Gạch đặc nung (Hình 3) là loại gạch được làm bằng đất sét và được nung nguyên khối, không có lỗ rỗng. Do kết cấu khối đặc vậy nên khối gạch khá cứng chắc, ít thấm nước, đảm bảo kết cấu công trình. Bác Ba muốn làm 500 viên gạch như thế, hỏi cần bao nhiêu mét khối đất sét? Biết kích thước mỗi viên gạch là 205 mm, 95 mm, 55 mm, và độ dãn nở không đáng kể.

Sách bài tập Toán 7 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Lời giải

Thể tích của một viên gạch nung là: 205 . 95 . 55 = 1 071 125 (mm3).

Thể tích của khối đất sét cần dùng để làm 500 viên gạch nung là:

500 . 1 071 125 = 535 562 500 (mm3).

Đổi 535 562 500 mm3 = 0,5355625 m3 ≈ 0,54 m3.

Vậy cần khoảng 0,54 mét khối đất sét để làm 500 viên gạch.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác

Bài tập cuối chương 3

Bài 1: Các góc ở vị trí đặc biệt

Bài 2: Tia phân giác

Bài 3: Hai đường thẳng song song

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Toán 7 Chương 3 (Kết nối tri thức 2023): Góc và đường thẳng song song hay, chi tiết

Next post

Cho∫01fxdx=1 và ∫01gxdx=−2. Tính I=∫01fx−2gxdx

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học
  7. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  8. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  9. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  10. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  11. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  12. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
  14. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  15. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  16. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  18. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  19. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  20. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  21. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  22. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  23. Chương 6: Các đại lượng tỉ lệ
  24. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  25. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận
  26. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  27. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  28. Chương 7: Biểu thức đại số
  29. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  30. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  33. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  34. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  35. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  36. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  37. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  38. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  39. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  40. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  41. Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán