Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác

By admin 19/04/2023 0

Giải SBT Toán lớp 7 Bài 8: Tính chất ba đường cao của tam giác

Giải trang 63 Tập 2

Bài 1 trang 63 Tập 2: Trong Hình 7. Hãy chứng minh AC, EK và BD cùng đi qua một điểm.

Trong Hình 7 Hãy chứng minh AC, EK và BD cùng đi qua một điểm

Lời giải:

Trong Hình 7 Hãy chứng minh AC, EK và BD cùng đi qua một điểm

Gọi M là giao điểm của AC và BD.

Xét tam giác MAB có E là giao điểm của hai đường cao AD và BC nên E là trực tâm của tam giác MAB.

Khi đó ME là đường cao kẻ từ đỉnh M của tam giác AMB, tức là ME ⊥ AB.

Mà EK ⊥ AB.

Do đó EK đi qua điểm M.

Vậy AC, EK và BD cùng đi qua điểm M.

Bài 2 trang 63 Tập 2: Cho tam giác ABC cân tại A, vẽ đường trung tuyến AM. Qua A vẽ đường thẳng d vuông góc với AM. Chứng minh d // BC.

Lời giải:

Cho tam giác ABC cân tại A, vẽ đường trung tuyến AM

Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.

Vì AM là trung tuyến của tam giác ABC nên BM = CM.

Xét ΔAMB và ΔAMC có:

Cạnh AM là cạnh chung,

AB = AC (chứng minh trên),

BM = CM (chứng minh trên).

Do đó ΔAMB = ΔAMC (c.c.c).

Suy ra AMB^=AMC^ (hai góc tương ứng).

Lại có AMB^+AMC^=180° (hai góc kề bù).

Nên AMB^=AMC^=180°2=90°.

Hay AM ⊥BC.

Mà d ⊥ AM (giả thiết).

Suy ra d // BC (dấu hiệu nhận biết hai đường thẳng song song).

Vậy d // BC.

Bài 3 trang 63 Tập 2: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD. Chứng minh góc EAF vuông.

Lời giải:

Cho tam giác ABC cân tại A Vẽ điểm D sao cho A là trung điểm của BD

Vì tam giác ABC cân tại A nên AB = AC.

Mà AB = AD (vì A là trung điểm của BD).

Suy ra AC = AD = AB.

Xét ΔAEB và ΔAEC có:

AEB^=AEC^=90°,

Cạnh AE là cạnh chung,

AB = AC (chứng minh trên).

Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).

Suy ra BAE^=CAE^ (hai góc tương ứng).

Xét ΔACF và ΔADF có:

AFC^=AFD^=90°,

Cạnh AF là cạnh chung,

AC = AD (chứng minh trên).

Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).

Suy ra FAC^=FAD^ (hai góc tương ứng).

Ta có BAE^+CAE^+FAC^+FAD^=180°

Mà BAE^=CAE^, FAC^=FAD^(chứng minh trên).

Suy ra 2EAC^+2FAC^=180°

Hay 2EAC^+FAC^=180°:2=90°

Do đó EAF^=90°.

Vậy góc EAF vuông.

Bài 4 trang 63 Tập 2: Cho tam giác ABC có A^=65°,B^=54°. Vẽ trực tâm H của tam giác ABC. Tính góc AHB.

Lời giải:

Cho tam giác ABC có góc A = 65 độ, góc B = 54 độ

Trong tam giác vuông ABE ta có: EAB^+EBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà EBA^=54° nên EAB^=90°−EBA^=90°−54°=36°.

Trong tam giác vuông BAF ta có: FAB^+FBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà FAB^=65° nên FBA^=90°−FAB^=90°−65°=25°.

Trong ∆AHB ta có: HAB^+HBA^+AHB^=180° (tổng ba góc trong một tam giác).

Suy ra

AHB^=180°−HAB^−HBA^=180°−36°−25°=119°.

Vậy AHB^=119°.

Bài 5 trang 63 Tập 2: Cho tam giác ABC cân tại A có góc A nhọn và H là trực tâm. Cho biết BHC^=150°. Tìm các góc của tam giác ABC.

Lời giải:

Vẽ hai đường cao BE và CF của tam giác ABC.

Cho tam giác ABC cân tại A có góc A nhọn và H là trực tâm

Trong ∆BHC có: HCB^+HBC^+CHB^=180° (tổng ba góc trong một tam giác).

Suy ra

HBC^+HCB^=180−BHC^=180°−150°=30°

Trong ∆CBE vuông tại E có: ECB^+EBC^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Nên ECB^=90°−EBC^ (1)

Trong ∆CBF vuông tại F có: FCB^+FBC^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Nên FBC^=90°−FCB^ (2)

Từ (1) và (2) ta có:

FBC^+ECB^=180°−EBC^+FCB^

=180°−HBC^+HCB^=180°−30°=150°.

Hay ABC^+ACB^=150°

Do tam giác ABC cân tại A nên ta có:

ABC^=ACB^=150°2=75°.

Trong ∆ABC có: ACB^+ABC^+CAB^=180° (tổng ba góc trong một tam giác).

Suy ra

A^=180°−ACB^−ABC^=180°−75°−75°=30°.

Vậy ABC^=ACB^=75°, A^=30°.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 7 : Tính chất ba đường trung tuyến của tam giác

Bài 8 : Tính chất ba đường cao của tam giác

Bài 9 : Tính chất ba đường phân giác của tam giác

: Bài tập cuối chương 8

Bài 1 : Làm quen với biến cố ngẫu nhiên

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Sự đồng quy của ba đường trung tuyến, ba đường phân giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Cho số phức z=a+bi a,b∈ℝ  thỏa mãn z−8i+z−6i=51+i . Tính giá trị của biểu thức P=a+b 

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học
  7. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  8. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  9. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  10. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  11. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  12. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
  14. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3
  15. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  16. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  17. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  18. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  19. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  20. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  21. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  22. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  23. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  24. Chương 6: Các đại lượng tỉ lệ
  25. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  26. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận
  27. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  28. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  29. Chương 7: Biểu thức đại số
  30. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  31. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến
  32. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  33. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  34. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  35. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  36. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  37. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  38. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  39. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  40. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  41. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán