Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 1: Số vô tỉ. Căn bậc hai số học

Giải trang 35 Tập 1

Bài 1 trang 35 Sách bài tập Toán 7 Tập 1:

a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân.

−74;                      

3310;

−1243;

1225.

b) Trong các số thập phân trên hãy chỉ ra các số thập phân vô hạn tuần hoàn.

Lời giải

a) +) Đặt tính, ta được:

Sách bài tập Toán 7 Bài 1: Số vô tỉ. Căn bậc hai số học - Chân trời sáng tạo (ảnh 1)

Vậy −74=−1,75.

+) Đặt tính, ta được:

Sách bài tập Toán 7 Bài 1: Số vô tỉ. Căn bậc hai số học - Chân trời sáng tạo (ảnh 1)

Vậy 3310=3,3.

+) Đặt tính, ta được:

Sách bài tập Toán 7 Bài 1: Số vô tỉ. Căn bậc hai số học - Chân trời sáng tạo (ảnh 1)

Vậy −1243=9 – 41,333… = – 41,(3).

Đặt tính, ta được:

Sách bài tập Toán 7 Bài 1: Số vô tỉ. Căn bậc hai số học - Chân trời sáng tạo (ảnh 1)

Vậy 1225=0,48.

b) Trong các số thập phân trên, số thập phân vô hạn tuần hoàn là  – 41, 333… .

Bài 2 trang 35 Sách bài tập Toán 7 Tập 1: Hãy biểu diễn các số thập phân sau dưới dạng số hữu tỉ: 7,2; 0,25; 7,(2).

Lời giải

Ta có:

7,2 = 7210; 

0,25 = 25100;

7,(2) = 7 + 0,(2) = 7 + 2.0,(1) = 7 + 2.19 = 639+29=659.

Vậy biểu diễn các số thập phân 7,2; 0,25; 7,(2) dưới dạng số hữu tỉ lần lượt là 7210;   25100;  659.

Bài 3 trang 35 Sách bài tập Toán 7 Tập 1: Chọn phát biểu đúng trong các phát biểu sau:

a) 3∈ ?;

b) 25∈ ?;

c) – ? ∈ ?;

d) 10047∈ℚ.

Lời giải

a) Ta có: 3≈1,732050808… nên 3 được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra 3 là số vô tỉ hay 3∈ ?. Do đó a) đúng.

b) Ta có 52 = 25 (5 > 0) nên25=5. Suy ra 5 là số hữu tỉ, mà số hữu tỉ không phải số cô tỉ nên 25∉ ?. Do đó b) sai.

c) Ta có: – π ≈ -3,141592654… nên – π được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra – π là số vô tỉ hay – π ∈ ?. Do đó c) đúng.

d) Ta có: 10047≈1,458649915… nên 10047 được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn. Suy ra 10047 là số vô tỉ, mà số vô tỉ không là số hữu tỉ. Do đó d) sai.

Vậy phát biểu đúng là a và c.

Bài 4 trang 35 Sách bài tập Toán 7 Tập 1: Tính:

a) −81;

b) 225;

c) 6425;

d) −112;

e) 132.

Lời giải

a) Ta có 92 = 81 (9 > 0) nên −81=−9.

b) Ta có: 152 = 225 (15 > 0) nên 225=15.

c) Ta có: 852=85.85=6425 85>0 nên 6425=85.

d) Ta có 112 = (-11)2 (11 > 0) nên −112=11

e) Ta có 13 > 0 nên132=13.

Bài 5 trang 35 Sách bài tập Toán 7 Tập 1: Hãy thay dấu ? bằng các số thích hợp:

Lời giải

Ta có:

162 = 256 (16 > 0) nên 256=16. Do đó a = 16.

72 = 49 nên a = 49.

62 = 36 (6 > 0) nên 36=6. Do đó a = 6.

202 = 400 nên a = 400.

Khi đó ta điền vào bảng, ta được:





a

256

49

36

400

a

16

7

6

20

Giải trang 36 Tập 1

Bài 6 trang 36 Sách bài tập Toán 7 Tập 1: Dùng máy tính cầm tay để tính các căn bậc hai sau (làm tròn đến 3 chữ số thập phân).

a) 133; 

b)99; 

c) 7;

d) 1000.

Lời giải

Sử dụng máy tính cầm tay, giá trị các căn bậc hai là:

a) 133≈11,53256259…≈11,533. 

b)99≈9,949874371…≈9,950.

c) 7≈2,645751311…≈2,646. 

d) 1000≈31,6227766…≈31,623.

Bài 7 trang 36 Sách bài tập Toán 7 Tập 1: Bác Tám thuê thợ trồng hoa cho một cái sân hình vuông hết tất cả là 36 720 000 đồng. Cho biết chi phí cho 1 m2 (kể cả công thợ và vật liệu) là 255 000 đồng. Hãy tính chiều dài mỗi cạnh của cái sân.

Lời giải

Diện tích của sân hình vuông là:

36 720 000 : 255 000 = 144 (m2).

Mà cái sân hình vuông nên diện tích của sân bằng bình phương độ dài cạnh nên độ dài cạnh của hình vuông là căn bậc hai số học của diện tích.

Vì vậy chiều dài mỗi cạnh của sân là: 144=12 (m).

Vậy chiều dài mỗi cạnh của sân là 12 m.

Bài 8 trang 36 Sách bài tập Toán 7 Tập 1: Tính bán kính một hình tròn có diện tích là 42,52 m2.

Lời giải

Gọi R là bán kính của hình tròn, khi đó ta có công thức: S = π.R2

Mà diện tích hình tròn là 42,52 m2 nên R2 = 42,52 : π = 42,52π 

⇔ R = 42,52π≈3,68.

Vậy bán kính của hình tròn khoảng 3,68 m.

Bài 9 trang 36 Sách bài tập Toán 7 Tập 1: Tìm số hữu tỉ trong các số sau:

5,3; 19; 99; 2,(11); 0,456; 1,21.

Lời giải

Ta có:

5,3 = 5310 (trong đó 53; 10 ∈ ℤ và 10 ≠ 0) nên 5,3 là một số hữu tỉ.

132=1913>0 nên 19=13, (trong đó 1; 3 ∈ ℤ và 3 ≠ 0) nên 19 là một số hữu tỉ.

99≈9,949874371… là số thập phân vô hạn không tuần hoàn nên 99 là một số vô tỉ.

2,(11) ≈ 2,111111… là số thập phân vô hạn tuần hoàn với chu kì 11 nên 2,(11) là một số hữu tỉ.

0,456 là số thập phân hữu hạn nên là một số hữu tỉ.

Ta có 1,12 = 1,21 (1,1 > 0) nên 1,21=1,1, mà 1,1 là số thập phân hữu hạn nên là một số hữu tỉ.

Vậy số hữu tỉ trong các số trên là: 5,3; 19;  2,(11); 0,456; 1,21.

Bài 10 trang 36 Sách bài tập Toán 7 Tập 1: Tìm số vô tỉ trong các số sau:

5;   −254;    14449.

Lời giải

Ta có: 5≈2,236067977… là số thập phân vô hạn không tuần hoàn nên là số vô tỉ.

Ta có: 522=52.52=25452>0 nên 254=52 ⇒−254=−52. Mà −52 là số hữu tỉ. Do đó −254 là số hữu tỉ.

Ta có: 1272=127.127=14449127>0 nên  14449=127. Mà 127 là số hữu tỉ. Do đó  14449 là số hữu tỉ.

Bài 11 trang 36 Sách bài tập Toán 7 Tập 1: Người ta chứng minh được rằng:

– Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn.

– Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân vô hạn tuần hoàn.

Hãy tìm số thập phân vô hạn tuần hoàn trong các số hữu tỉ sau: 720;256.

Lời giải

Xét phân số 720, ta có mẫu số của phân số là 20 = 22.5 có ước nguyên tố là 2 và 5 nên phân số này được viết dưới dạng số thập phân hữu hạn.

Xét phân số 256, ta có mẫu số của phân số là 6 = 2.3 có ước nguyên tố là 2 và 3 nên phân số này được viết dưới dạng số thập phân vô hạn tuần hoàn.

Vậy số thập phân vô hạn tuần hoàn là 256.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 1

Bài 1: Số vô tỉ. Căn bậc hai số học

Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Bài 3: Làm tròn số và ước lượng kết quả

Bài tập cuối chương 2

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Làm quen với số thập phân vô hạn tuần hoàn (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Kí hiệu \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} – 4z + 8 = 0\). Giá trị của \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  7. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  8. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  9. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  10. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  11. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  12. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3
  14. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  15. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  16. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  18. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  19. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  20. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  21. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  22. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  23. Chương 6: Các đại lượng tỉ lệ
  24. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  25. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận
  26. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  27. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  28. Chương 7: Biểu thức đại số
  29. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  30. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  33. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  34. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  35. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  36. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  37. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  38. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  39. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  40. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  41. Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán